

pi-top Python SDK (Preview)

A simple, modular interface for interacting with a pi-top and its related accessories and components.

Supports all pi-top devices:

[image: _images/devices.jpg]
Supports pi-top Maker Architecture (PMA):

[image: _images/pma.jpg]
Supports all pi-top peripherals:

[image: _images/peripherals.jpg]

Status: Active Development

This SDK is currently in active development. Please be patient while we work towards v1.0.0!

Backwards Compatibility

When this library reaches v1.0.0, we will aim to maintain backwards-compatibility thereafter.
Until then, every effort will be made to ensure stable support, but it cannot be guaranteed.
Breaking changes will be clearly documented.

About

This SDK aims to provide an easy-to-use framework for managing a pi-top.
It includes a Python 3 package (pitop), with several custom modules and classes for interfacing
with a range of pi-top devices and peripherals. It also contains CLI utilities, to interact with
your pi-top using the terminal.

The SDK is included out-of-the-box with pi-topOS.

Ensure that you keep your system up-to-date to enjoy the latest features and bug fixes.

This library is installed as a Python 3 module called pitop. It includes several
submodules that allow you to easily interact with most of the hardware inside a pi-top.

You can easily connect different components of the system using the
modules available in the library:

from time import sleep
from pitop import UltrasonicSensor, Miniscreen

utrasonic = UltrasonicSensor("D1")
miniscreen = Miniscreen()

while True:
 miniscreen.display_text(utrasonic.distance)
 sleep(0.1)

Check out the Overview chapter for more information on what you can do.

The SDK also contains a Command Line Interface (CLI).
See the ‘pi-top’ command for more information.

Table of Contents

	1. Getting Started
	1.1. Installing the SDK

	1.2. Checking that the SDK is installed and working

	1.3. What next!?

	2. Overview
	2.1. pi-top [4]

	2.2. pi-top laptops

	2.3. pi-topCEED

	3. Key Concepts
	3.1. pi-top Maker Architecture

	3.2. pi-top [4] Miniscreen

	4. Recipes
	4.1. PMA: Using a Button to Control an LED

	4.2. Robotics Kit: DIY Rover

	4.3. Robotics Kit: Robot - Moving Randomly

	4.4. Robotics Kit: Robot - Line Detection

	4.5. Displaying camera stream in pi-top [4]’s miniscreen

	4.6. Robotics Kit: Robot - Control using Bluedot

	4.7. Using the pi-topPULSE’s LED matrix to show the battery level

	4.8. Choose a pi-top [4] miniscreen startup animation

	5. API - pi-top Device
	5.1. Pitop

	5.2. pi-top Battery

	5.3. pi-top Display

	5.4. pi-top [4] Miniscreen

	6. API - pi-top Maker Architecture (PMA) Components
	6.1. Button

	6.2. Buzzer

	6.3. Encoder Motor

	6.4. LED

	6.5. Light Sensor

	6.6. Potentiometer

	6.7. Servo Motor

	6.8. Sound Sensor

	6.9. Ultrasonic Sensor

	7. API - pi-top Peripheral Devices
	7.1. pi-topPROTO+

	7.2. pi-topPULSE

	8. API - System Peripheral Devices
	8.1. USB Camera

	8.2. Keyboard Button

	9. Command-Line Tools (CLI)
	9.1. ‘pi-top’ Command

	10. 🧪 Labs - Experimental APIs ⚠️
	10.1. Web

	11. More Information
	11.1. Frequently Asked Questions

	11.2. API Changes

	11.3. Contributing

	11.4. References

	11.5. Requirements

	11.6. License

1. Getting Started

1.1. Installing the SDK

1.1.1. pi-topOS

This SDK is pre-installed on pi-topOS, so you don’t need to install it manually!

1.1.2. Using apt

The recommended way of getting the latest version is through apt.

Check out Using pi-top Hardware with Raspberry Pi OS [https://pi-top.com/pi-top-rpi-os] in the pi-top knowledge base for how to do this.

Note

If you only want to install the SDK, then you can replace the “Install software packages” step:

sudo apt install -y python3-pitop

This will also install additional packages onto your system that the SDK requires in order to work.

1.1.3. Using PyPI

In general, this is not recommended.

You can also install the latest version of the SDK through PyPI in your pi-top with:

pip3 install pitop

You’ll need to install one extra dependency for the SDK to work when using pip:

sudo apt install libatlas-base-dev -y

Note

This will not install the system packages required for all areas of the SDK to work. This may be useful if you wish to use a virtualenv with a different version dependency to the system.

1.1.4. Building from source

In general, this is not recommended.

Building from source is simple:

git clone https://github.com/pi-top/pi-top-Python-SDK.git
cd pi-top-Python-SDK
pip3 install -e .

You’ll need to install one extra dependency for the SDK to work when using pip:

sudo apt install libatlas-base-dev -y

Note

This will not install the system packages required for all areas of the SDK to work. This may be useful if you wish to use a virtualenv with a different version dependency to the system.

1.2. Checking that the SDK is installed and working

Try and run the following:

pi-top devices hub

If this works, then you should be good to go! Go and check out the Examples section!

1.3. What next!?

Now that you’re ready to go, check out the Overview chapter for more information on what you can do.

2. Overview

This API provides features that are selectively available, depending on the pi-top device that you are using. To find out what is available for your pi-top device, see the relevant section below.

Choose your pi-top device to go to the relevant section:

	pi-top [4]

	pi-top [3]

	pi-topCEED

	Original pi-top

This API provides some convenience classes for common System Peripheral Devices, such as:

	Camera

	Keyboard

2.1. pi-top [4]

2.1.1. Interacting with onboard pi-top [4] hardware

pi-top [4] supports the following API devices/components for its onboard hardware:

	pi-top Battery

	pi-top [4] Miniscreen

pi-top [4] does not support the following API devices/components:

	pi-top Display

This is due to the fact that pi-top [4] has no attached display, and the pi-top [4] official display’s brightness is handled in hardware with physical brightness buttons, and the backlight is handled by DPMS (the operating system’s internal screen blanking functionality).

2.1.2. Physical computing with pi-top [4]

pi-top [4] supports the following API devices/components for physical computing:

	pi-topPULSE

	pi-top Maker Architecture (PMA) Components

The pi-topPULSE can be used as a Raspberry Pi HAT with a pi-top [4]. The USB camera library can be used with any USB camera, and - whilst technically can be used with any Raspberry Pi/pi-top, was designed with the pi-top [4] and PMA in mind.

pi-top [4] does not support the following API devices/components:

	pi-topPROTO+

This is due to the fact that pi-topPROTO+ makes use of the legacy ‘modular rail’, which has no way of connecting to a pi-top [4].

Check out the key concepts for pi-top Maker Architecture for more information.

2.2. pi-top laptops

2.2.1. Interacting with onboard pi-top laptop hardware

pi-top laptops (Original pi-top and pi-top [3]) support the following API devices/components for their onboard hardware:

	pi-top Battery

	pi-top Display

pi-top laptops does not support the following API devices/components:

	pi-top [4] Miniscreen

This is due to the fact that pi-top laptops do not include the pi-top [4]’s miniscreen.

2.2.2. Using peripherals with a pi-top laptop

pi-top laptops (Original pi-top and pi-top [3]) support the following API devices/components for use with peripherals:

	pi-topPROTO+

	pi-topPULSE

Note that the USB camera library works with any pi-top with a USB camera connected. This was designed for pi-top [4] usage, but due to its general purpose functionality, it can technically be used if desired.

pi-topSPEAKER support is provided automagically by pi-topd, and so there is no exposed API for this.

pi-top laptops does not support the following API devices/components:

	pi-top Maker Architecture (PMA) Components

This is due to the fact that PMA is only available for pi-top [4].

2.3. pi-topCEED

2.3.1. Interacting with onboard pi-topCEED hardware

pi-top laptops (Original pi-top and pi-top [3]) support the following API devices/components for their onboard hardware:

	pi-top Display

pi-top laptops does not support the following API devices/components:

	pi-top Battery

	pi-top [4] Miniscreen

This is due to the fact that pi-topCEED does not include a battery or the pi-top [4]’s miniscreen.

2.3.2. Using peripherals with a pi-topCEED

pi-topCEED supports the following API devices/components for use with peripherals:

	pi-topPROTO+

	pi-topPULSE

Note that the USB camera library works with any pi-top with a USB camera connected. This was designed for pi-top [4] usage, but due to its general purpose functionality, it can technically be used if desired.

pi-topSPEAKER support is provided automagically by pi-topd, and so there is no exposed API for this.

pi-topCEED does not support the following API devices/components:

	pi-top Maker Architecture (PMA) Components

This is due to the fact that PMA is only available for pi-top [4].

3. Key Concepts

3.1. pi-top Maker Architecture

This section aims to clarify the various components of PMA, and the terminology that is required to get the most out of it.

3.1.1. Inputs and Outputs

A component can be classified as an Input or Output, according to how it behaves.

An Input component generates electric signals that can be interpreted as information when read. For example, when a button is clicked,
the electric signal it produces lets you know that it’s state changed.

An Output component receives electric signals and performs an action based on them. For example, a buzzer;
when no signal is applied it will be silent; however when an electric signal is applied, it will
generate sound.

3.1.2. Digital and Analog

Components can also be classified according to the type of electric signals they use.

Digital components only use digital electric signals; digital signals are discrete and carry information in binary form, most of the times consisting in different voltage values.
This change in voltage can be read by a Raspberry Pi directly.

Analog components use analog electric signals; analog signals are continuous and can have infinite values in a determined range.
Raspberry Pi can’t directly read these signals since it’s a digital component. To be able to manage analog signals, the Foundation and Expansion plates include
an Analog to Digital Converter (ADC). This device converts the analog signal from the component into a digital signal that can be interpreted by the Raspberry Pi.

3.1.3. Ports and Pins

The pi-top Maker Architecture (PMA) connector on the pi-top [4] makes available all GPIO from the Raspberry Pi to the Foundation and Expansion Plates.

This means that the ports located in these plates are mapped to the GPIO header on the Raspberry Pi, providing easy and standard access through Grove connectors
to these pins.

Foundation and Expansion Plates have multiple connectors that can be used to interface with different kind components.

[image: _images/ExpansionPlate.jpg]

3.1.3.1. Digital Ports

Used to communicate with digital devices.

These ports are labeled from D0 to D7.

3.1.3.2. Analog Ports

Used to communicate with analog devices.

These ports are labeled from A0 to A3.

3.1.3.3. Motor Ports

Communicates a motor encoder component with the motor controller, located inside the Expansion Plate.

These ports are labeled from M0 to M3

3.1.3.4. ServoMotor Ports

Communicates a servo motor component with the servomotor controller, located inside the Expansion Plate.

These ports are labeled from S0 to S3.

3.1.3.5. I2C Ports

Used to communicate with generic I2C devices.

These ports are labeled as I2C.

3.1.4. Identifying PMA port for a component

The components included in the Foundation Kit & Robotics Kit can be classified according to how they operate and communicate.

3.1.4.1. Digital component

These components should be connected to a Digital Port on the Foundation/Expansion Plates.

The Digital components included in the Foundation & Robotics Kits are:

	Button

	Buzzer

	LED

3.1.4.2. Analog component

These components should be connected to a Analog Port on the Foundation/Expansion Plates, labeled from A0 to A3.

The Analog components included in the Foundation & Robotics Kits are:

	LightSensor

	Potentiometer

	SoundSensor

	UltrasonicSensor

3.1.4.3. Motor component

An electromechanical component that is controlled by communicating with a microprocessor located inside the Expansion Plate.

These components should be connected to a Motor Port or to ServoMotor Port on the Expansion Plate,
depending on the component used.

The Motor component included in the Robotics Kits are:

	MotorEncoder (connects to a Motor Port)

	ServoMotor (connects to a ServoMotor Port)

3.1.5. More Information

For more information about pi-top Maker Architecture, check out the pi-top Knowledge Base [https://pi-top.com/pi-top-os-pma].

3.2. pi-top [4] Miniscreen

[image: _images/pi-top_4_Front.jpg]
The miniscreen of the pi-top [4] can be found on the front, comprised of an 128x64 pixel
OLED screen and 4 programmable buttons.

The pt-miniscreen package (pt-sys-oled in earlier versions of pi-topOS), provided out-of-the-box with pi-topOS (and available for Raspberry Pi OS),
provides a convenient interactive menu interface, using the pi-top [4]’s miniscreen OLED display and
buttons for navigation and actions. This menu includes useful information and options about the system
state and configuration.

When a user program creates an instance of the miniscreen, the system menu will clear itself and
start to ignore button press events until the user program exits. This is true, regardless of
whether or not the OLED display or the buttons were intended to be used.

Warning

When you write a program that interacts with the pi-top [4] miniscreen, the miniscreen display
will clear itself, ready to be controlled by user code.

The system menu cannot be accessed until the program exits, at which point the system menu is
automatically restored.

Note

For convenience, it is recommended that you provide yourself with an easy method of being able
to exit your program. It is recommended that you configure an input (such as the miniscreen’s
‘cancel’ button) to trigger an exit. This is particularly helpful if you wish to start/stop
your project headlessly (that is, without requiring a display or keyboard/mouse).

Here is one way of achieving this:

from time import sleep

from pitop import Pitop

pitop = Pitop()
miniscreen = pitop.miniscreen
miniscreen.display_multiline_text("Press cancel to exit!", font_size=22)

while not miniscreen.cancel_button.is_pressed:
 sleep(0.1)

miniscreen.display_multiline_text("Bye!")
sleep(2)

If you wish to make use of any of the functionality in system menu, have a go at implementing
it yourself in your own project!

4. Recipes

In addition to the examples provided for each component/device in the API reference section of this documentation, the following recipes demonstrate some of the more advanced capabilities of the pi-top Python SDK. In particular, these recipes focus on practical use-cases that make use of multiple components/devices within the pi-top Python SDK.

Be sure to check out each component/device separately for simple examples of how to use them.

4.1. PMA: Using a Button to Control an LED

from time import sleep

from pitop import LED, Button

button = Button("D1")
led = LED("D2")

Connect button to LED
button.when_pressed = led.on
button.when_released = led.off

Wait for Ctrl+C to exit
try:
 while True:
 sleep(1)
except KeyboardInterrupt:
 pass

4.2. Robotics Kit: DIY Rover

from threading import Thread
from time import sleep

from pitop import BrakingType, EncoderMotor, ForwardDirection

Setup the motors for the rover configuration

motor_left = EncoderMotor("M3", ForwardDirection.CLOCKWISE)
motor_right = EncoderMotor("M0", ForwardDirection.COUNTER_CLOCKWISE)

motor_left.braking_type = BrakingType.COAST
motor_right.braking_type = BrakingType.COAST

Define some functions for easily controlling the rover

def drive(target_rpm: float):
 print("Start driving at target", target_rpm, "rpm...")
 motor_left.set_target_rpm(target_rpm)
 motor_right.set_target_rpm(target_rpm)

def stop_rover():
 print("Stopping rover...")
 motor_left.stop()
 motor_right.stop()

def turn_left(rotation_speed: float):
 print("Turning left...")
 motor_left.stop()
 motor_right.set_target_rpm(rotation_speed)

def turn_right(rotation_speed: float):
 print("Turning right...")
 motor_right.stop()
 motor_left.set_target_rpm(rotation_speed)

Start a thread to monitor the rover

def monitor_rover():
 while True:
 print(
 "> Rover motor RPM's (L,R):",
 round(motor_left.current_rpm, 2),
 round(motor_right.current_rpm, 2),
)
 sleep(1)

monitor_thread = Thread(target=monitor_rover, daemon=True)
monitor_thread.start()

Go!

rpm_speed = 100
for _ in range(4):
 drive(rpm_speed)
 sleep(5)

 turn_left(rpm_speed)
 sleep(5)

stop_rover()

4.3. Robotics Kit: Robot - Moving Randomly

from random import randint
from time import sleep

from pitop import Pitop
from pitop.robotics.drive_controller import DriveController

Create a basic robot
robot = Pitop()
drive = DriveController(left_motor_port="M3", right_motor_port="M0")
robot.add_component(drive)

Use miniscreen display
robot.miniscreen.display_multiline_text("hey there!")

def random_speed_factor():
 # 0.01 - 1, 0.01 resolution
 return randint(1, 100) / 100

def random_sleep():
 # 0.5 - 2, 0.5 resolution
 return randint(1, 4) / 2

Move around randomly
robot.drive.forward(speed_factor=random_speed_factor())
sleep(random_sleep())

robot.drive.left(speed_factor=random_speed_factor())
sleep(random_sleep())

robot.drive.backward(speed_factor=random_speed_factor())
sleep(random_sleep())

robot.drive.right(speed_factor=random_speed_factor())
sleep(random_sleep())

4.4. Robotics Kit: Robot - Line Detection

from signal import pause

from pitop import Camera, DriveController, Pitop
from pitop.processing.algorithms.line_detect import process_frame_for_line

Assemble a robot
robot = Pitop()
robot.add_component(DriveController(left_motor_port="M3", right_motor_port="M0"))
robot.add_component(Camera())

Set up logic based on line detection
def drive_based_on_frame(frame):
 processed_frame = process_frame_for_line(frame)

 if processed_frame.line_center is None:
 print("Line is lost!", end="\r")
 robot.drive.stop()
 else:
 print(f"Target angle: {processed_frame.angle:.2f} deg ", end="\r")
 robot.drive.forward(0.25, hold=True)
 robot.drive.target_lock_drive_angle(processed_frame.angle)
 robot.miniscreen.display_image(processed_frame.robot_view)

On each camera frame, detect a line
robot.camera.on_frame = drive_based_on_frame

pause()

4.5. Displaying camera stream in pi-top [4]’s miniscreen

from pitop import Camera, Pitop

camera = Camera()
pitop = Pitop()
camera.on_frame = pitop.miniscreen.display_image

4.6. Robotics Kit: Robot - Control using Bluedot

Note

BlueDot [https://bluedot.readthedocs.io/en/latest/] is a Python library that allows you to control Raspberry Pi projects remotely. This example demonstrates a way to control a robot with a virtual joystick.

from signal import pause
from threading import Lock

from bluedot import BlueDot

from pitop import DriveController

bd = BlueDot()
bd.color = "#00B2A2"
lock = Lock()

drive = DriveController(left_motor_port="M3", right_motor_port="M0")

def move(pos):
 if lock.locked():
 return

 if any(
 [
 pos.angle > 0 and pos.angle < 20,
 pos.angle < 0 and pos.angle > -20,
]
):
 drive.forward(pos.distance, hold=True)
 elif pos.angle > 0 and 20 <= pos.angle <= 160:
 turn_radius = 0 if 70 < pos.angle < 110 else pos.distance
 speed_factor = -pos.distance if pos.angle > 110 else pos.distance
 drive.right(speed_factor, turn_radius)
 elif pos.angle < 0 and -160 <= pos.angle <= -20:
 turn_radius = 0 if -110 < pos.angle < -70 else pos.distance
 speed_factor = -pos.distance if pos.angle < -110 else pos.distance
 drive.left(speed_factor, turn_radius)
 elif any(
 [
 pos.angle > 0 and pos.angle > 160,
 pos.angle < 0 and pos.angle < -160,
]
):
 drive.backward(pos.distance, hold=True)

def stop(pos):
 lock.acquire()
 drive.stop()

def start(pos):
 if lock.locked():
 lock.release()
 move(pos)

bd.when_pressed = start
bd.when_moved = move
bd.when_released = stop

pause()

4.7. Using the pi-topPULSE’s LED matrix to show the battery level

from time import sleep

from pitop import Pitop
from pitop.pulse import ledmatrix

def draw_battery_outline(): # Draw the naked battery
 for y in range(0, 6):
 ledmatrix.set_pixel(1, y, 64, 64, 255)
 ledmatrix.set_pixel(5, y, 64, 64, 255)
 for x in range(2, 5):
 ledmatrix.set_pixel(x, 0, 64, 64, 255)
 ledmatrix.set_pixel(x, 6, 192, 192, 192)
 ledmatrix.show()

def update_battery_state(charging_state, capacity):
 r = 0
 g = 0
 b = 0
 if charging_state == 0:
 if capacity < 11:
 r = 255
 else:
 g = 255
 elif charging_state == 1:
 r = 255
 g = 225

 cap = int(capacity / 20) + 1
 if cap < 0:
 cap = 0
 if cap > 5:
 cap = 5

 if cap > 0:
 for y in range(1, cap + 1):
 ledmatrix.set_pixel(2, y, r, g, b)
 ledmatrix.set_pixel(3, y, r, g, b)
 ledmatrix.set_pixel(4, y, r, g, b)
 if cap == 0:
 cap = 1
 if cap < 6:
 if (capacity < 50) and (charging_state == 0):
 # blinking warning
 for i in range(1, 3):
 for y in range(cap + 1, 6):
 ledmatrix.set_pixel(2, y, 0, 0, 0)
 ledmatrix.set_pixel(3, y, 0, 0, 0)
 ledmatrix.set_pixel(4, y, 0, 0, 0)
 ledmatrix.show()
 sleep(0.4)
 for y in range(cap + 1, 6):
 ledmatrix.set_pixel(2, y, 255, 0, 0)
 ledmatrix.set_pixel(3, y, 255, 0, 0)
 ledmatrix.set_pixel(4, y, 255, 0, 0)
 ledmatrix.show()
 sleep(0.4)

 else:
 for y in range(cap + 1, 6):
 ledmatrix.set_pixel(2, y, 0, 0, 0)
 ledmatrix.set_pixel(3, y, 0, 0, 0)
 ledmatrix.set_pixel(4, y, 0, 0, 0)
 ledmatrix.show()
 sleep(5)
 return 0

def main():
 ledmatrix.rotation(0)
 ledmatrix.clear() # Clear the display
 draw_battery_outline() # Draw the battery outline

 battery = Pitop().battery

 while True:
 try:
 charging_state, capacity, _, _ = battery.get_full_state()
 update_battery_state(charging_state, capacity) # Fill battery with capacity

 except Exception as e:
 print("Error getting battery info: " + str(e))

if __name__ == "__main__":
 main()

4.8. Choose a pi-top [4] miniscreen startup animation

Note

This code makes use of the GIPHY SDK [https://developers.giphy.com/]. Follow the instructions here [https://developers.giphy.com/docs/api] to find out how to apply for an API Key to use with this project.

Replace <MY GIPHY KEY> with the key provided (keep the quotes).

You can change the type of images that you get by changing SEARCH_TERM = “Monochrome” to whatever you want.

import json
from configparser import ConfigParser
from os import geteuid
from random import randint
from signal import pause
from sys import exit
from time import sleep
from urllib.parse import urlencode
from urllib.request import urlopen

from PIL import Image
from requests.models import PreparedRequest

from pitop.miniscreen import Miniscreen

def is_root():
 return geteuid() == 0

if not is_root():
 print("Admin access required - please run this script with 'sudo'.")
 exit()

Define Giphy parameters
SEARCH_LIMIT = 10
SEARCH_TERM = "Monochrome"

CONFIG_FILE_PATH = "/etc/pt-miniscreen/settings.ini"
STARTUP_GIF_PATH = "/home/pi/miniscreen-startup.gif"

API_KEY = "<MY GIPHY KEY>"

Define global variables
gif = None
miniscreen = Miniscreen()
req = PreparedRequest()
req.prepare_url(
 "http://api.giphy.com/v1/gifs/search",
 urlencode({"q": SEARCH_TERM, "api_key": API_KEY, "limit": f"{SEARCH_LIMIT}"}),
)

def display_instructions_dialog():
 miniscreen.select_button.when_pressed = play_random_gif
 miniscreen.cancel_button.when_pressed = None
 miniscreen.display_multiline_text(
 "Press SELECT to load a random GIF!", font_size=18
)

def display_user_action_select_dialog():
 miniscreen.select_button.when_pressed = save_gif_as_startup
 miniscreen.cancel_button.when_pressed = play_random_gif
 miniscreen.display_multiline_text(
 "SELECT: save GIF as default startup animation. CANCEL: load new GIF",
 font_size=12,
)

def display_loading_dialog():
 miniscreen.select_button.when_pressed = None
 miniscreen.cancel_button.when_pressed = display_instructions_dialog
 miniscreen.display_multiline_text("Loading random GIF...", font_size=18)

def display_saving_dialog():
 miniscreen.select_button.when_pressed = None
 miniscreen.cancel_button.when_pressed = None
 miniscreen.display_multiline_text(
 "GIF saved as default startup animation!", font_size=18
)
 # Saving is fast, so we need to wait a short while for the message to be seen on the display
 sleep(1)

def play_random_gif():
 global gif

 # Show "Loading..." while processing for a GIF
 display_loading_dialog()

 # Get GIF data from Giphy
 with urlopen(req.url) as response:
 data = json.loads(response.read())

 # Extract random GIF URL from JSON response
 gif_url = data["data"][randint(0, SEARCH_LIMIT - 1)]["images"]["fixed_height"][
 "url"
]

 # Load GIF from URL
 gif = Image.open(urlopen(gif_url))

 # Play one loop of GIF animation
 miniscreen.play_animated_image(gif)

 # Ask user if they want to save it
 display_user_action_select_dialog()

def save_gif_as_startup():
 # Display "saving" dialog
 display_saving_dialog()

 # Save file to home directory
 gif.save(STARTUP_GIF_PATH, save_all=True)

 config = ConfigParser()
 cfg_section = "Bootsplash"

 if not config.has_section(cfg_section):
 config.add_section(cfg_section)

 config.set(cfg_section, "Path", STARTUP_GIF_PATH)

 with open(CONFIG_FILE_PATH, "w") as f:
 config.write(f)

 # Go back to the start
 display_instructions_dialog()

Display initial dialog
display_instructions_dialog()

Wait indefinitely for user input
pause()

5. API - pi-top Device

5.1. Pitop

This class represents a pi-top device.
Each of the on-board features of pi-tops can be accessed from this object.

Note

This class has been built with pi-top [4] in mind, as is in early development.
You may notice that some features do not behave as expected on other platforms.

If you would like to help us with development, please refer to the Contributing [https://github.com/pi-top/pi-top-Python-SDK/blob/master/.github/CONTRIBUTING.md]
document in this repository for information!

Here is some sample code demonstrating how the various subsystems of a pi-top [4] can be accessed and used:

from time import sleep

from PIL import Image

from pitop import Pitop

Set up pi-top
pitop = Pitop()

Say hi!
pitop.miniscreen.display_text("Hello!")
sleep(2)

Display battery info
battery_capacity = pitop.battery.capacity
battery_charging = pitop.battery.is_charging

pitop.miniscreen.display_multiline_text(
 "Battery Status:\n"
 f"-Capacity: {battery_capacity}%\n"
 f"-Charging: {battery_charging}",
 font_size=15,
)
sleep(2)

Configure buttons to do something
keep_running = True

def display_gif_and_exit():
 image = Image.open(
 "/usr/lib/python3/dist-packages/pitop/miniscreen/images/rocket.gif"
)
 pitop.miniscreen.play_animated_image(image)
 pitop.miniscreen.display_text("Bye!")
 sleep(2)
 global keep_running
 keep_running = False

pitop.miniscreen.select_button.when_pressed = display_gif_and_exit
pitop.miniscreen.cancel_button.when_pressed = display_gif_and_exit
pitop.miniscreen.up_button.when_pressed = display_gif_and_exit
pitop.miniscreen.down_button.when_pressed = display_gif_and_exit

pitop.miniscreen.display_multiline_text("Press any button...", font_size=25)

Sleep until `display_gif_and_exit` runs
while keep_running:
 sleep(0.3)

Although it is possible to access pi-top subsystems individually, it is recommended to access them via this class.

5.1.1. Class Reference: Pitop

	
class pitop.Pitop

	Represents a pi-top Device.

When creating a Pitop object, multiple properties will be set,
depending on the pi-top device that it’s running the code. For example, if run on
a pi-top [4], a miniscreen attribute will be created as an interface to control the
miniscreen OLED display, but that won’t be available for other pi-top devices.

The Pitop class is a Singleton. This means that only one instance per process will
be created. In practice, this means that if in a particular project you instance a Pitop
class in 2 different files, they will share the internal state.

	property miniscreen

	If using a pi-top [4], this property returns a pitop.miniscreen.Miniscreen object, to interact with the device’s Miniscreen.

	property oled

	Refer to miniscreen.

	property battery

	If using a pi-top with a battery, this property returns a pitop.battery.Battery object, to interact with the device’s battery.

	
own_state

	Representation of an object state that will be used to determine the
current state of an object.

All pi-tops come with some software-controllable onboard hardware. These sections of the API make it easy to access and change the state of your pi-top hardware.

5.1.2. Using the Pitop object

5.1.2.1. Attaching objects and saving configuration to a file

from time import sleep

from pitop import LED, Pitop
from pitop.robotics.drive_controller import DriveController

pitop = Pitop()
drive_controller = DriveController()
led = LED("D0", name="red_led")

Add components to the Pitop object
pitop.add_component(drive_controller)
pitop.add_component(led)

Do something with the object
pitop.red_led.on()
pitop.drive.forward(0.5)
sleep(2)
pitop.red_led.off()
pitop.drive.stop()

Store configuration to a file
pitop.save_config("/home/pi/my_custom_config.json")

5.1.2.2. Loading an existing configuration

from time import sleep

from pitop import Pitop

Load configuration from a previous session
pitop = Pitop.from_file("/home/pi/my_custom_config.json")

Check the loaded configuration
print(pitop.config)

Do something with your device
pitop.red_led.on()
pitop.drive.forward(0.5)
sleep(2)
pitop.red_led.off()
pitop.drive.stop()

Check the state of all the components attached to the Pitop object
pitop.print_state()

5.2. pi-top Battery

This class provides a simple way to check the current onboard pi-top battery state, and handle
some state change events.

This class will work with original pi-top, pi-top [3] and pi-top [4]. pi-topCEED has no onboard battery, and so will not work.

from pitop import Pitop

battery = Pitop().battery

print(f"Battery capacity: {battery.capacity}")
print(f"Battery time remaining: {battery.time_remaining}")
print(f"Battery is charging: {battery.is_charging}")
print(f"Battery is full: {battery.is_full}")
print(f"Battery wattage: {battery.wattage}")

def do_low_battery_thing():
 print("Battery is low!")

def do_critical_battery_thing():
 print("Battery is critically low!")

def do_full_battery_thing():
 print("Battery is full!")

def do_charging_battery_thing():
 print("Battery is charging!")

def do_discharging_battery_thing():
 print("Battery is discharging!")

To invoke a function when the battery changes state, you can assign the function to various 'when_' data members
battery.when_low = do_low_battery_thing
battery.when_critical = do_critical_battery_thing
battery.when_full = do_full_battery_thing
battery.when_charging = do_charging_battery_thing
battery.when_discharging = do_discharging_battery_thing

Another way to react to battery events is to poll
while True:
 if battery.is_full:
 do_full_battery_thing()

5.2.1. Class Reference: pi-top Battery

	
class pitop.battery.Battery

	
	
capacity

	

	
classmethod get_full_state()

	

	
is_charging

	

	
is_full

	

	
time_remaining

	

	
wattage

	

5.3. pi-top Display

This class provides a simple way to check the current onboard pi-top display state, and handle
state change events.

This class will work with original pi-top, pi-topCEED and pi-top [3].

Note

Not compatible with pi-top [4].

pi-top [4] has no onboard display, and the official pi-top [4] FHD Display is not software-controllable.

from signal import pause
from time import sleep

from pitop import Pitop

pitop = Pitop()
display = pitop.display

Get display information
print(f"Display brightness: {display.brightness}")
print(f"Display blanking timeout: {display.blanking_timeout}")
print(f"Display backlight is on: {display.backlight}")
print(f"Display lid is open: {display.lid_is_open}")

Change the brightness levels incrementally
display.increment_brightness()
display.decrement_brightness()

Set brightness explicitly
display.brightness = 7

Set screen blank state
display.blank()
display.unblank()

Set screen blanking timeout (s)
display.blanking_timeout = 60

Define some functions to call on events
def do_brightness_changed_thing(new_brightness):
 print(new_brightness)
 print("Display brightness has changed!")

def do_screen_blanked_thing():
 print("Display is blanked!")

def do_screen_unblanked_thing():
 print("Display is unblanked!")

def do_lid_closed_thing():
 print("Display lid is closed!")

def do_lid_opened_thing():
 print("Display lid is open!")

'Wire up' functions to display events
display.when_brightness_changed = do_brightness_changed_thing
display.when_screen_blanked = do_screen_blanked_thing
display.when_screen_unblanked = do_screen_unblanked_thing
display.when_lid_closed = do_lid_closed_thing
display.when_lid_opened = do_lid_opened_thing

Wait indefinitely for events to be handled in the background
pause()

Or alternatively poll
print("Polling for if lid is open (Original pi-top/pi-top [3] only)")
while True:
 if display.lid_is_open:
 do_lid_opened_thing()
 sleep(0.1)

5.3.1. Class Reference: pi-top Display

	
class pitop.display.Display

	
	
backlight

	

	
blank()

	

	
blanking_timeout

	

	
brightness

	

	
decrement_brightness()

	

	
increment_brightness()

	

	
lid_is_open

	

	
unblank()

	

5.4. pi-top [4] Miniscreen

[image: _images/pi-top_4_Front.jpg]
The miniscreen of the pi-top [4] can be found on the front, comprised of an 128x64 pixel
OLED screen and 4 programmable buttons.

Check out Key Concepts: pi-top [4] Miniscreen for useful information about how this class works.

5.4.1. Using the Miniscreen’s OLED Display

[image: _images/pi-top_4_Front_OLED.jpg]
The OLED display is an array of pixels that can be either on or off. Unlike the pixels in a more advanced display, such as the monitor you are most likely reading this on, the display is a “1-bit monochromatic” display. Text and images can be displayed by directly manipulating the pixels.

The pitop.miniscreen.Miniscreen class directly provides display functions for the OLED.

5.4.1.1. Displaying text

from time import sleep

from pitop import Pitop

pitop = Pitop()
miniscreen = pitop.miniscreen
miniscreen.display_multiline_text("Hello, world!", font_size=20)
sleep(5)

5.4.1.2. Showing an image

from time import sleep

from pitop import Pitop

pitop = Pitop()
miniscreen = pitop.miniscreen

miniscreen.display_image_file(
 "/usr/lib/python3/dist-packages/pitop/miniscreen/images/rocket.gif"
)

sleep(2)

5.4.1.3. Loop a GIF

from PIL import Image, ImageSequence

from pitop import Pitop

pitop = Pitop()
miniscreen = pitop.miniscreen

rocket = Image.open("/usr/lib/python3/dist-packages/pitop/miniscreen/images/rocket.gif")

while True:
 for frame in ImageSequence.Iterator(rocket):
 miniscreen.display_image(frame)

5.4.1.4. Displaying an GIF once

from PIL import Image

from pitop import Pitop

pitop = Pitop()
miniscreen = pitop.miniscreen

rocket = Image.open("/usr/lib/python3/dist-packages/pitop/miniscreen/images/rocket.gif")

miniscreen.play_animated_image(rocket)

5.4.1.5. Displaying an GIF once through frame by frame

from PIL import Image, ImageSequence

from pitop import Pitop

pitop = Pitop()
miniscreen = pitop.miniscreen

rocket = Image.open("/usr/lib/python3/dist-packages/pitop/miniscreen/images/rocket.gif")

for frame in ImageSequence.Iterator(rocket):
 miniscreen.display_image(frame)

5.4.1.6. Displaying an GIF looping in background

from time import sleep

from PIL import Image

from pitop import Pitop

pitop = Pitop()
miniscreen = pitop.miniscreen

image = Image.open("/usr/lib/python3/dist-packages/pitop/miniscreen/images/rocket.gif")

Run animation loop in background by setting `background` to True
miniscreen.play_animated_image(image, background=True, loop=True)

Do stuff while showing image
print("Counting to 100 while showing animated image on miniscreen...")

for i in range(100):
 print("\r{}".format(i), end="", flush=True)
 sleep(0.2)

print("\rFinished!")

Stop animation
miniscreen.stop_animated_image()

5.4.1.7. Handling basic 2D graphics drawing and displaying

from PIL import Image, ImageDraw, ImageFont

from pitop import Pitop

pitop = Pitop()
miniscreen = pitop.miniscreen
image = Image.new(
 miniscreen.mode,
 miniscreen.size,
)
canvas = ImageDraw.Draw(image)
miniscreen.set_max_fps(1)

def clear():
 canvas.rectangle(miniscreen.bounding_box, fill=0)

print("Drawing an arc")
canvas.arc(miniscreen.bounding_box, 0, 180, fill=1, width=1)
miniscreen.display_image(image)

clear()

print("Drawing an image")
Note: this is an animated file, but this approach will only show the first frame
demo_image = Image.open(
 "/usr/lib/python3/dist-packages/pitop/miniscreen/images/rocket.gif"
).convert("1")
canvas.bitmap((0, 0), demo_image, fill=1)
miniscreen.display_image(image)

clear()

print("Drawing a chord")
canvas.chord(miniscreen.bounding_box, 0, 180, fill=1)
miniscreen.display_image(image)

clear()

print("Drawing an ellipse")
canvas.ellipse(miniscreen.bounding_box, fill=1)
miniscreen.display_image(image)

clear()

print("Drawing a line")
canvas.line(miniscreen.bounding_box, fill=1)
miniscreen.display_image(image)

clear()

print("Drawing a pieslice")
canvas.pieslice(miniscreen.bounding_box, 0, 180, fill=1)
miniscreen.display_image(image)

clear()

print("Drawing a point")
canvas.point(miniscreen.bounding_box, fill=1)
miniscreen.display_image(image)

clear()

print("Drawing a polygon")
canvas.polygon(miniscreen.bounding_box, fill=1)
miniscreen.display_image(image)

clear()

print("Drawing a rectangle")
canvas.rectangle(miniscreen.bounding_box, fill=1)
miniscreen.display_image(image)

clear()

print("Drawing some text")
canvas.text((0, 0), "Hello\nWorld!", font=ImageFont.load_default(), fill=1)
miniscreen.display_image(image)

5.4.1.8. Displaying a clock

from datetime import datetime

from PIL import Image, ImageDraw

from pitop import Pitop

pitop = Pitop()
miniscreen = pitop.miniscreen
miniscreen.set_max_fps(1)

image = Image.new(
 miniscreen.mode,
 miniscreen.size,
)
canvas = ImageDraw.Draw(image)

bounding_box = (32, 0, 95, 63)

big_hand_box = (
 bounding_box[0] + 5,
 bounding_box[1] + 5,
 bounding_box[2] - 5,
 bounding_box[3] - 5,
)

little_hand_box = (
 bounding_box[0] + 15,
 bounding_box[1] + 15,
 bounding_box[2] - 15,
 bounding_box[3] - 15,
)

while True:
 current_time = datetime.now()

 # Clear
 canvas.rectangle(bounding_box, fill=0)

 # Draw face
 canvas.ellipse(bounding_box, fill=1)

 # Draw hands
 angle_second = (current_time.second * 360 / 60) - 90
 canvas.pieslice(big_hand_box, angle_second, angle_second + 2, fill=0)

 angle_minute = (current_time.minute * 360 / 60) - 90
 canvas.pieslice(big_hand_box, angle_minute, angle_minute + 5, fill=0)

 angle_hour = (
 (current_time.hour * 360 / 12) + (current_time.minute * 360 / 12 / 60)
) - 90
 canvas.pieslice(little_hand_box, angle_hour, angle_hour + 5, fill=0)

 # Display to screen
 miniscreen.display_image(image)

5.4.1.9. Display a particle-based screensaver

from random import randint

from PIL import Image, ImageDraw

from pitop import Pitop

pitop = Pitop()
miniscreen = pitop.miniscreen
image = Image.new(
 miniscreen.mode,
 miniscreen.size,
)
canvas = ImageDraw.Draw(image)

speed_factor = 15
particles = []

class Particle:
 def __init__(self, x, y):
 self.x = x
 self.y = y
 self.update()

 def get_position(self):
 return (self.x, self.y)

 def update(self):
 dx = (
 (self.x - (miniscreen.width / 2)) / speed_factor
 if self.x < (miniscreen.width / 2)
 else (self.x - (miniscreen.width / 2)) / speed_factor
)
 dy = (
 (self.y - (miniscreen.height / 2)) / speed_factor
 if self.y < (miniscreen.height / 2)
 else (self.y - (miniscreen.height / 2)) / speed_factor
)
 self.x += dx
 self.y += dy

def add_new_particle():
 x = randint(0, miniscreen.width)
 y = randint(0, miniscreen.height)
 particles.append(Particle(x, y))

while True:
 # Clear display
 canvas.rectangle(miniscreen.bounding_box, fill=0)
 particles.clear()

 speed_factor = randint(5, 30)
 particle_count = randint(5, 50)

 for count in range(particle_count):
 add_new_particle()

 for _ in range(100):
 for particle in particles:
 x, y = particle.get_position()

 if (x < 0 or x > miniscreen.width) or (y < 0 or y > miniscreen.height):
 particles.remove(particle)
 add_new_particle()
 else:
 canvas.point((x, y), fill=1)
 particle.update()

 miniscreen.display_image(image)

5.4.1.10. Prim’s algorithm

from random import randint, random
from time import sleep

from PIL import Image, ImageDraw

from pitop import Pitop

https://en.wikipedia.org/wiki/Maze_generation_algorithm

pitop = Pitop()
miniscreen = pitop.miniscreen
image = Image.new(
 miniscreen.mode,
 miniscreen.size,
)
canvas = ImageDraw.Draw(image)
miniscreen.set_max_fps(50)

def draw_pixel(pos):
 canvas.point(pos, fill=1)
 miniscreen.display_image(image)
 drawn_pixels.append(pos)

width = (miniscreen.width // 2) * 2 - 1
height = (miniscreen.height // 2) * 2 - 1

while True:
 print("Initialising...")
 canvas.rectangle(miniscreen.bounding_box, fill=0)

 drawn_pixels = list()
 complexity = int(random() * (5 * (width + height)))
 density = int(random() * ((width // 2) * (height // 2)))

 print("Drawing the borders...")

 for x in range(width):
 draw_pixel((x, 0))
 draw_pixel((x, (height // 2) * 2))

 for y in range(height):
 draw_pixel((0, y))
 draw_pixel(((width // 2) * 2, y))

 print("Filling the maze...")

 for i in range(density):
 x, y = randint(0, width // 2) * 2, randint(0, height // 2) * 2
 if (x, y) not in drawn_pixels:
 draw_pixel((x, y))

 for j in range(complexity):
 neighbours = []
 if x > 1:
 neighbours.append((x - 2, y))
 if x < width - 3:
 neighbours.append((x + 2, y))
 if y > 1:
 neighbours.append((x, y - 2))
 if y < height - 3:
 neighbours.append((x, y + 2))
 if len(neighbours):
 x_, y_ = neighbours[randint(0, len(neighbours) - 1)]
 if (x_, y_) not in drawn_pixels:
 draw_pixel((x_, y_))
 draw_pixel((x_ + (x - x_) // 2, y_ + (y - y_) // 2))
 x, y = x_, y_

 print("Done!")

 sleep(10)

5.4.1.11. 2-Player Pong Game

from random import randrange
from time import sleep

from PIL import Image, ImageDraw, ImageFont

from pitop import Pitop

Game variables
BALL_RADIUS = 2
PADDLE_SIZE = (2, 20)
PADDLE_CTRL_VEL = 4

class Ball:
 def __init__(self):
 self.pos = [0, 0]
 self.vel = [0, 0]

 # 50/50 chance of direction
 self.init(move_right=randrange(0, 2) == 0)

 def init(self, move_right):
 self.pos = [miniscreen.width // 2, miniscreen.height // 2]

 horz = randrange(1, 3)
 vert = randrange(1, 3)

 if move_right is False:
 horz = -horz

 self.vel = [horz, -vert]

 @property
 def x_pos(self):
 return self.pos[0]

 @property
 def y_pos(self):
 return self.pos[1]

 def is_aligned_with_paddle_horizontally(self, paddle):
 return abs(self.x_pos - paddle.x_pos) <= BALL_RADIUS + PADDLE_SIZE[0] // 2

 def is_aligned_with_paddle_vertically(self, paddle):
 return abs(self.y_pos - paddle.y_pos) <= BALL_RADIUS + PADDLE_SIZE[1] // 2

 def is_touching_paddle(self, paddle):
 hor = self.is_aligned_with_paddle_horizontally(paddle)
 ver = self.is_aligned_with_paddle_vertically(paddle)
 return hor and ver

 @property
 def is_touching_vertical_walls(self):
 return (
 self.y_pos <= BALL_RADIUS
 or self.y_pos >= miniscreen.height + 1 - BALL_RADIUS
)

 def change_direction(self, change_x=False, change_y=False, speed_factor=1.0):
 x_vel = -self.vel[0] if change_x else self.vel[0]
 self.vel[0] = speed_factor * x_vel

 y_vel = -self.vel[1] if change_y else self.vel[1]
 self.vel[1] = speed_factor * y_vel

 def update(self):
 self.pos = [x + y for x, y in zip(self.pos, self.vel)]

 if self.is_touching_vertical_walls:
 self.change_direction(change_y=True, speed_factor=1.0)

 @property
 def bounding_box(self):
 def get_circle_bounds(center, radius):
 x0 = center[0] - radius
 y0 = center[1] - radius
 x1 = center[0] + radius
 y1 = center[1] + radius
 return (x0, y0, x1, y1)

 return get_circle_bounds(self.pos, BALL_RADIUS)

class Paddle:
 def __init__(self, start_pos=[0, 0]):
 self.pos = start_pos
 self.vel = 0
 self.score = 0

 def increase_score(self):
 self.score += 1

 @property
 def x_pos(self):
 return self.pos[0]

 @property
 def y_pos(self):
 return self.pos[1]

 @y_pos.setter
 def y_pos(self, new_y):
 self.pos[1] = new_y

 @property
 def touching_top(self):
 return self.y_pos - PADDLE_SIZE[1] // 2 <= 0

 @property
 def touching_bottom(self):
 return self.y_pos + PADDLE_SIZE[1] // 2 >= miniscreen.height - 1

 def update(self):
 moving_down = self.vel > 0

 if self.touching_top and not moving_down:
 return

 if self.touching_bottom and moving_down:
 return

 self.y_pos += self.vel

 if self.touching_top:
 self.y_pos = PADDLE_SIZE[1] // 2

 if self.touching_bottom:
 self.y_pos = miniscreen.height - PADDLE_SIZE[1] // 2 - 1

 @property
 def bounding_box(self):
 return (
 self.x_pos,
 self.y_pos - PADDLE_SIZE[1] // 2,
 self.x_pos,
 self.y_pos + PADDLE_SIZE[1] // 2,
)

def update_button_state():
 down_pressed = miniscreen.down_button.is_pressed
 up_pressed = miniscreen.up_button.is_pressed
 select_pressed = miniscreen.select_button.is_pressed
 cancel_pressed = miniscreen.cancel_button.is_pressed

 if down_pressed == up_pressed:
 l_paddle.vel = 0
 elif down_pressed:
 l_paddle.vel = PADDLE_CTRL_VEL
 elif up_pressed:
 l_paddle.vel = -PADDLE_CTRL_VEL

 if select_pressed == cancel_pressed:
 r_paddle.vel = 0
 elif select_pressed:
 r_paddle.vel = PADDLE_CTRL_VEL
 elif cancel_pressed:
 r_paddle.vel = -PADDLE_CTRL_VEL

def update_positions():
 round_finished = False

 l_paddle.update()
 r_paddle.update()
 ball.update()

 paddles = {l_paddle, r_paddle}
 for paddle in paddles:
 if ball.is_aligned_with_paddle_horizontally(paddle):
 if ball.is_touching_paddle(paddle):
 ball.change_direction(change_x=True, speed_factor=1.1)
 else:
 other_paddle = paddles - {paddle}
 other_paddle = other_paddle.pop()
 other_paddle.increase_score()

 ball.init(move_right=other_paddle == r_paddle)
 paddle.y_pos = miniscreen.height // 2
 other_paddle.y_pos = miniscreen.height // 2

 round_finished = True

 break

 return round_finished

def draw(wait=False):
 canvas = ImageDraw.Draw(image)

 # Clear screen
 canvas.rectangle(miniscreen.bounding_box, fill=0)

 # Draw ball
 canvas.ellipse(ball.bounding_box, fill=1)

 # Draw paddles
 canvas.line(l_paddle.bounding_box, fill=1, width=PADDLE_SIZE[0])

 canvas.line(r_paddle.bounding_box, fill=1, width=PADDLE_SIZE[0])

 # Draw score
 font = ImageFont.truetype("VeraMono.ttf", size=12)
 canvas.multiline_text(
 (1 * miniscreen.width // 3, 2),
 str(l_paddle.score),
 fill=1,
 font=font,
 align="center",
)
 canvas.multiline_text(
 (2 * miniscreen.width // 3, 2),
 str(r_paddle.score),
 fill=1,
 font=font,
 align="center",
)

 # Display image
 miniscreen.display_image(image)

 if wait:
 sleep(1.5)

Internal variables
pitop = Pitop()
miniscreen = pitop.miniscreen
miniscreen.set_max_fps(30)

ball = Ball()

l_paddle = Paddle([PADDLE_SIZE[0] // 2 - 1, miniscreen.height // 2])
r_paddle = Paddle([miniscreen.width - 1 - PADDLE_SIZE[0] // 2, miniscreen.height // 2])

image = Image.new(
 miniscreen.mode,
 miniscreen.size,
)

def main():
 while True:
 update_button_state()
 draw(update_positions())

if __name__ == "__main__":
 main()

5.4.2. Class Reference: pi-top [4] Miniscreen

	
class pitop.miniscreen.Miniscreen

	Represents a pi-top [4]’s miniscreen display.

Also owns the surrounding 4 buttons as properties
(up_button, down_button, select_button,
cancel_button). See
pitop.miniscreen.miniscreen.MiniscreenButton for how to use these
buttons.

	
bottom_left

	Gets the bottom-left corner of the miniscreen display.

	Returns

	The coordinates of the bottom left of the display’s bounding box as an (x,y) tuple.

	Return type

	tuple [https://docs.python.org/3.7/library/stdtypes.html#tuple]

	
bottom_right

	Gets the bottom-right corner of the miniscreen display.

	Returns

	The coordinates of the bottom right of the display’s bounding box as an (x,y) tuple.

	Return type

	tuple [https://docs.python.org/3.7/library/stdtypes.html#tuple]

	
bounding_box

	Gets the bounding box of the miniscreen display.

	Returns

	The device’s bounding box as an (top-left x, top-left y, bottom-right x, bottom-right y) tuple.

	Return type

	tuple [https://docs.python.org/3.7/library/stdtypes.html#tuple]

	
cancel_button

	Gets the cancel button of the pi-top [4] miniscreen.

	Returns

	A gpiozero-like button instance representing the cancel button of the pi-top [4] miniscreen.

	Return type

	pitop.miniscreen.miniscreen.MiniscreenButton

	
center

	Gets the center of the miniscreen display.

	Returns

	The coordinates of the center of the display’s bounding box as an (x,y) tuple.

	Return type

	tuple [https://docs.python.org/3.7/library/stdtypes.html#tuple]

	
clear()

	Clears any content displayed in the miniscreen display.

	
contrast(new_contrast_value)

	Sets the contrast value of the miniscreen display to the provided
value.

	Parameters

	new_contrast_value (int [https://docs.python.org/3.7/library/functions.html#int]) – contrast value to set, between 0 and 255.

	
device

	Gets the miniscreen display device instance.

	Return type

	pitop.miniscreen.oled.core.contrib.luma.oled.device.sh1106

	
display(force=False)

	Displays what is on the current canvas to the screen as a single
frame.

Warning

This method is deprecated and will be deleted on the next major release of the SDK.

This method does not need to be called when using the other draw
functions in this class, but is used when the caller wants to use
the canvas object to draw composite objects and then render them
to screen in a single frame.

	
display_image(image, xy=None, invert=False)

	Render a static image to the screen from a file or URL at a given
position.

The image should be provided as a PIL Image object.

	Parameters

	
	image (Image) – A PIL Image object to be rendered

	xy (tuple [https://docs.python.org/3.7/library/stdtypes.html#tuple]) – The position on the screen to render the image. If not
provided or passed as None the image will be drawn in the top-left of
the screen.

	invert (bool [https://docs.python.org/3.7/library/functions.html#bool]) – Set to True to flip the on/off state of each pixel in the image

	
display_image_file(file_path_or_url, xy=None, invert=False)

	Render a static image to the screen from a file or URL at a given
position.

The display’s positional properties (e.g. top_left, top_right) can be used to assist with
specifying the xy position parameter.

	Parameters

	
	file_path_or_url (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – A file path or URL to the image

	xy (tuple [https://docs.python.org/3.7/library/stdtypes.html#tuple]) – The position on the screen to render the image. If not
provided or passed as None the image will be drawn in the top-left of
the screen.

	invert (bool [https://docs.python.org/3.7/library/functions.html#bool]) – Set to True to flip the on/off state of each pixel in the image

	
display_multiline_text(text, xy=None, font_size=None, font=None, invert=False, anchor=None, align=None)

	Renders multi-lined text to the screen at a given position and size.
Text that is too long for the screen will automatically wrap to the
next line.

The display’s positional properties (e.g. top_left, top_right) can be used to assist with
specifying the xy position parameter.

	Parameters

	
	text (string) – The text to render

	xy (tuple [https://docs.python.org/3.7/library/stdtypes.html#tuple]) – The position on the screen to render the image. If not
provided or passed as None the image will be drawn in the top-left of
the screen.

	font_size (int [https://docs.python.org/3.7/library/functions.html#int]) – The font size in pixels. If not provided or passed as
None, the default font size will be used

	font (string) – A filename or path of a TrueType or OpenType font.
If not provided or passed as None, the default font will be used

	invert (bool [https://docs.python.org/3.7/library/functions.html#bool]) – Set to True to flip the on/off state of each pixel in the image

	align (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – PIL ImageDraw alignment to use

	anchor (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – PIL ImageDraw text anchor to use

	
display_text(text, xy=None, font_size=None, font=None, invert=False, align=None, anchor=None)

	Renders a single line of text to the screen at a given position and
size.

The display’s positional properties (e.g. top_left, top_right) can be used to assist with
specifying the xy position parameter.

	Parameters

	
	text (string) – The text to render

	xy (tuple [https://docs.python.org/3.7/library/stdtypes.html#tuple]) – The position on the screen to render the image. If not
provided or passed as None the image will be drawn in the top-left of
the screen.

	font_size (int [https://docs.python.org/3.7/library/functions.html#int]) – The font size in pixels. If not provided or passed as
None, the default font size will be used

	font (string) – A filename or path of a TrueType or OpenType font.
If not provided or passed as None, the default font will be used

	invert (bool [https://docs.python.org/3.7/library/functions.html#bool]) – Set to True to flip the on/off state of each pixel in the image

	align (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – PIL ImageDraw alignment to use

	anchor (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – PIL ImageDraw text anchor to use

	
down_button

	Gets the down button of the pi-top [4] miniscreen.

	Returns

	A gpiozero-like button instance representing the down button of the pi-top [4] miniscreen.

	Return type

	pitop.miniscreen.miniscreen.MiniscreenButton

	
draw()

	warning::
This method is deprecated in favor of display_image() and
display_text(), and will be deleted on the next major release of the SDK.

	
draw_image(image, xy=None)

	warning::
This method is deprecated in favor of display_image(), and will be deleted on the next major release of the SDK.

	
draw_image_file(file_path_or_url, xy=None)

	warning::
This method is deprecated in favor of display_image_file(), and will be deleted on the next major release of the SDK.

	
draw_multiline_text(text, xy=None, font_size=None)

	warning::
This method is deprecated in favor of display_multiline_text(), and will be deleted on the next major release of the SDK.

	
draw_text(text, xy=None, font_size=None)

	warning::
This method is deprecated in favor of display_text(), and will be deleted on the next major release of the SDK.

	
height

	Gets the height of the miniscreen display.

	Return type

	int [https://docs.python.org/3.7/library/functions.html#int]

	
hide()

	The miniscreen display is put into low power mode.

The previously shown image will re-appear when show() is given,
even if the internal frame buffer has been changed (so long as
display() has not been called).

	
is_active

	Determine if the current miniscreen instance is in control of the
miniscreen hardware.

	Returns

	whether the miniscreen instance is in control of the miniscreen hardware.

	Return type

	bool [https://docs.python.org/3.7/library/functions.html#bool]

	
mode

	

	
play_animated_image(image, background=False, loop=False)

	Render an animation or a image to the screen.

Use stop_animated_image() to end a background animation

	Parameters

	
	image (Image) – A PIL Image object to be rendered

	background (bool [https://docs.python.org/3.7/library/functions.html#bool]) – Set whether the image should be in a background thread
or in the main thread.

	loop (bool [https://docs.python.org/3.7/library/functions.html#bool]) – Set whether the image animation should start again when it
has finished

	
play_animated_image_file(file_path_or_url, background=False, loop=False)

	Render an animated image to the screen from a file or URL.

	Parameters

	
	file_path_or_url (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – A file path or URL to the image

	background (bool [https://docs.python.org/3.7/library/functions.html#bool]) – Set whether the image should be in a background thread
or in the main thread.

	loop (bool [https://docs.python.org/3.7/library/functions.html#bool]) – Set whether the image animation should start again when it
has finished

	
prepare_image(image_to_prepare)

	Formats the given image into one that can be used directly by the
OLED.

	Parameters

	image_to_prepare (PIL.Image.Image [https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image]) – Image to be formatted.

	Return type

	PIL.Image.Image [https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image]

	
refresh()

	

	
reset(force=True)

	Gives the caller access to the miniscreen display (i.e. in the case
the system is currently rendering information to the screen) and clears
the screen.

	
select_button

	Gets the select button of the pi-top [4] miniscreen.

	Returns

	A gpiozero-like button instance representing the select button of the pi-top [4] miniscreen.

	Return type

	pitop.miniscreen.miniscreen.MiniscreenButton

	
set_control_to_hub()

	Signals the pi-top hub to take control of the miniscreen display.

	
set_control_to_pi()

	Signals the pi-top hub to give control of the miniscreen display to
the Raspberry Pi.

	
set_max_fps(max_fps)

	Set the maximum frames per second that the miniscreen display can
display. This method can be useful to control or limit the speed of
animations.

This works by blocking on the OLED’s display methods if called before
the amount of time that a frame should last is not exceeded.

	Parameters

	max_fps (int [https://docs.python.org/3.7/library/functions.html#int]) – The maximum frames that can be rendered per second

	
should_redisplay(image_to_display=None)

	Determines if the miniscreen display needs to be refreshed, based on
the provided image. If no image is provided, the content of the
display’s deprecated internal canvas property will be used.

	Parameters

	image_to_display (PIL.Image.Image [https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image] or None) – Image to be displayed.

	Return type

	bool [https://docs.python.org/3.7/library/functions.html#bool]

	
show()

	The miniscreen display comes out of low power mode showing the
previous image shown before hide() was called (so long as display() has
not been called)

	
size

	Gets the size of the miniscreen display as a (width, height) tuple.

	Return type

	tuple [https://docs.python.org/3.7/library/stdtypes.html#tuple]

	
sleep()

	The miniscreen display in set to low contrast mode, without
modifying the content of the screen.

	
spi_bus

	Gets the SPI bus used by the miniscreen display to receive data as
an integer. Setting this property will modify the SPI bus that the OLED
uses. You might notice a flicker in the screen.

	Parameters

	bus (int [https://docs.python.org/3.7/library/functions.html#int]) – Number of the SPI bus for the OLED to use. Accepted values are 0 or 1.

	
stop_animated_image()

	Stop background animation started using start(), if currently
running.

	
top_left

	Gets the top left corner of the miniscreen display.

	Returns

	The coordinates of the center of the display’s bounding box as an (x,y) tuple.

	Return type

	tuple [https://docs.python.org/3.7/library/stdtypes.html#tuple]

	
top_right

	Gets the top-right corner of the miniscreen display.

	Returns

	The coordinates of the top right of the display’s bounding box as an (x,y) tuple.

	Return type

	tuple [https://docs.python.org/3.7/library/stdtypes.html#tuple]

	
up_button

	Gets the up button of the pi-top [4] miniscreen.

	Returns

	A gpiozero-like button instance representing the up button of the pi-top [4] miniscreen.

	Return type

	pitop.miniscreen.miniscreen.MiniscreenButton

	
visible

	Gets whether the device is currently in low power state.

	Returns

	whether the screen is in low power mode

	Return type

	bool [https://docs.python.org/3.7/library/functions.html#bool]

	
wake()

	The miniscreen display is set to high contrast mode, without
modifying the content of the screen.

	
when_system_controlled

	Function to call when user gives back control of the miniscreen to
the system.

This is used by pt-miniscreen to update its ‘user-controlled’
application state.

	
when_user_controlled

	Function to call when user takes control of the miniscreen.

This is used by pt-miniscreen to update its ‘user-controlled’
application state.

	
width

	Gets the width of the miniscreen display.

	Return type

	int [https://docs.python.org/3.7/library/functions.html#int]

5.4.3. Using the Miniscreen’s Buttons

[image: _images/pi-top_4_Front_BUTTONS.jpg]
The miniscreen’s buttons are simple, and behave in a similar way to the other button-style components in this SDK. Each miniscreen button can be queried for their “is pressed” state, and also invoke callback functions for when pressed and released.

The pitop.miniscreen.Miniscreen class provides these buttons as properties:

>>> from pitop import Pitop
>>> pitop = Pitop()
>>> miniscreen = pitop.miniscreen
>>> miniscreen.up_button
<pitop.miniscreen.miniscreen.MiniscreenButton object at 0xb3e44e50>
>>> miniscreen.down_button
<pitop.miniscreen.miniscreen.MiniscreenButton object at 0xb3e44d30>
>>> miniscreen.select_button
<pitop.miniscreen.miniscreen.MiniscreenButton object at 0xb3e44e90>
>>> miniscreen.cancel_button
<pitop.miniscreen.miniscreen.MiniscreenButton object at 0xb3e44e70>

Here is an example demonstrating 2 ways to make use of these buttons:

from time import sleep

from pitop import Pitop

pitop = Pitop()
miniscreen = pitop.miniscreen
up = miniscreen.up_button
down = miniscreen.down_button

def do_up_thing():
 print("Up button was pressed")

def do_down_thing():
 print("Down button was pressed")

def do_another_thing():
 print("do_another_thing invoked")

def select_something():
 print("select_something called")

To invoke a function when the button is pressed/released,
you can assign the function to the 'when_pressed' or 'when_released' data member of a button
print("Configuring miniscreen's up and down button events...")
up.when_pressed = do_up_thing
down.when_pressed = do_down_thing
down.when_released = do_another_thing

Another way to react to button events is to poll the is_pressed data member
print("Polling for if select button is pressed...")
while True:
 if miniscreen.select_button.is_pressed:
 select_something()
 sleep(0.1)

5.4.4. Class Reference: pi-top [4] Miniscreen Button

	
class pitop.miniscreen.miniscreen.MiniscreenButton

	Represents one of the 4 buttons around the miniscreen display on a pi-
top [4].

Should not be created directly - instead, use pitop.miniscreen.Miniscreen.

	
is_pressed

	Get or set the button state as a boolean value.

	Return type

	bool [https://docs.python.org/3.7/library/functions.html#bool]

	
when_pressed

	Get or set the ‘when pressed’ button state callback function. When
set, this callback function will be invoked when this event happens.

	Parameters

	callback (Function) – Callback function to run when a button is pressed.

	
when_released

	Get or set the ‘when released’ button state callback function. When
set, this callback function will be invoked when this event happens.

	Parameters

	callback (Function) – Callback function to run when a button is released.

6. API - pi-top Maker Architecture (PMA) Components

[image: _images/components_spread.jpg]
[image: _images/Alex.jpg]
The Foundation & Expansion Plates and all the parts included in the Foundation & Robotics Kit are known as the pi-top Maker Architecture (PMA).

Each PMA component has a Python class provided for it.

Check out Key Concepts: pi-top Maker Architecture for useful information to get started with using PMA.

6.1. Button

[image: _images/button.jpg]

Note

This is a Digital Component which connects to a Digital Port [D0-D7].

from time import sleep

from pitop import Button

button = Button("D5")

def on_button_pressed():
 print("Pressed!")

def on_button_released():
 print("Released!")

button.when_pressed = on_button_pressed
button.when_released = on_button_released

while True:
 if button.is_pressed is True: # When button is pressed it will return True
 print(button.value)
 sleep(1)

	
class pitop.pma.Button(port_name, name='button')

	Encapsulates the behaviour of a push-button.

A push-button is a simple switch mechanism for controlling some aspect of a circuit.

	Parameters

	
	port_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The ID for the port to which this component is connected

	name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – Component name, defaults to button. Used to access this component when added to a pitop.Pitop object.

	
active_time

	The length of time (in seconds) that the device has been active for.
When the device is inactive, this is None [https://docs.python.org/3.7/library/constants.html#None].

	
close()

	Shut down the device and release all associated resources. This
method can be called on an already closed device without raising an
exception.

This method is primarily intended for interactive use at the command
line. It disables the device and releases its pin(s) for use by another
device.

You can attempt to do this simply by deleting an object, but unless
you’ve cleaned up all references to the object this may not work (even
if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By
contrast, the close method provides a means of ensuring that the object
is shut down.

For example, if you have a buzzer connected to port D0, but then wish
to attach an LED instead:

>>> from pitop import Buzzer, LED
>>> bz = Buzzer("D0")
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED("D0")
>>> led.blink()

Device descendents can also be used as context managers using
the with [https://docs.python.org/3.7/reference/compound_stmts.html#with] statement. For example:

>>> from pitop import Buzzer, LED
>>> with Buzzer("D0") as bz:
... bz.on()
...
>>> with LED("D0") as led:
... led.on()
...

	
closed

	Returns True [https://docs.python.org/3.7/library/constants.html#True] if the device is closed (see the close()
method). Once a device is closed you can no longer use any other
methods or properties to control or query the device.

	
config

	Returns a dictionary with the set of parameters that can be used to
recreate an object.

	
classmethod from_config(config_dict)

	Creates an instance of a Recreatable object with parameters in the
provided dictionary.

	
classmethod from_file(path)

	Creates an instance of an object using the JSON file from the
provided path.

	
held_time

	The length of time (in seconds) that the device has been held for.
This is counted from the first execution of the when_held event
rather than when the device activated, in contrast to
active_time. If the device is not currently held,
this is None [https://docs.python.org/3.7/library/constants.html#None].

	
hold_repeat

	If True [https://docs.python.org/3.7/library/constants.html#True], when_held will be executed repeatedly with
hold_time seconds between each invocation.

	
hold_time

	The length of time (in seconds) to wait after the device is activated,
until executing the when_held handler. If hold_repeat
is True, this is also the length of time between invocations of
when_held.

	
static import_class(module_name, class_name)

	Imports a class given a module and a class name.

	
inactive_time

	The length of time (in seconds) that the device has been inactive for.
When the device is active, this is None [https://docs.python.org/3.7/library/constants.html#None].

	
is_active

	Returns True [https://docs.python.org/3.7/library/constants.html#True] if the device is currently active and
False [https://docs.python.org/3.7/library/constants.html#False] otherwise. This property is usually derived from
value. Unlike value, this is always a boolean.

	
is_held

	When True [https://docs.python.org/3.7/library/constants.html#True], the device has been active for at least
hold_time seconds.

	
is_pressed

	Returns True [https://docs.python.org/3.7/library/constants.html#True] if the device is currently active and
False [https://docs.python.org/3.7/library/constants.html#False] otherwise. This property is usually derived from
value. Unlike value, this is always a boolean.

	
own_state

	Representation of an object state that will be used to determine the
current state of an object.

	
pin

	The Pin that the device is connected to. This will be
None [https://docs.python.org/3.7/library/constants.html#None] if the device has been closed (see the
close() method). When dealing with GPIO pins, query
pin.number to discover the GPIO pin (in BCM numbering) that the
device is connected to.

	
pressed_time

	The length of time (in seconds) that the device has been active for.
When the device is inactive, this is None [https://docs.python.org/3.7/library/constants.html#None].

	
print_config()

	

	
print_state()

	

	
pull_up

	If True [https://docs.python.org/3.7/library/constants.html#True], the device uses a pull-up resistor to set the GPIO pin
“high” by default.

	
save_config(path)

	Stores the set of parameters to recreate an object in a JSON
file.

	
state

	Returns a dictionary with the state of the current object and all of
its children.

	
value

	Returns 1 if the button is currently pressed, and 0 if it is not.

	
values

	An infinite iterator of values read from value.

	
wait_for_active(timeout=None)

	Pause the script until the device is activated, or the timeout is
reached.

	Parameters

	timeout (float [https://docs.python.org/3.7/library/functions.html#float] or None [https://docs.python.org/3.7/library/constants.html#None]) – Number of seconds to wait before proceeding. If this is
None [https://docs.python.org/3.7/library/constants.html#None] (the default), then wait indefinitely until the device
is active.

	
wait_for_inactive(timeout=None)

	Pause the script until the device is deactivated, or the timeout is
reached.

	Parameters

	timeout (float [https://docs.python.org/3.7/library/functions.html#float] or None [https://docs.python.org/3.7/library/constants.html#None]) – Number of seconds to wait before proceeding. If this is
None [https://docs.python.org/3.7/library/constants.html#None] (the default), then wait indefinitely until the device
is inactive.

	
wait_for_press(timeout=None)

	Pause the script until the device is activated, or the timeout is
reached.

	Parameters

	timeout (float [https://docs.python.org/3.7/library/functions.html#float] or None [https://docs.python.org/3.7/library/constants.html#None]) – Number of seconds to wait before proceeding. If this is
None [https://docs.python.org/3.7/library/constants.html#None] (the default), then wait indefinitely until the device
is active.

	
wait_for_release(timeout=None)

	Pause the script until the device is deactivated, or the timeout is
reached.

	Parameters

	timeout (float [https://docs.python.org/3.7/library/functions.html#float] or None [https://docs.python.org/3.7/library/constants.html#None]) – Number of seconds to wait before proceeding. If this is
None [https://docs.python.org/3.7/library/constants.html#None] (the default), then wait indefinitely until the device
is inactive.

	
when_activated

	The function to run when the device changes state from inactive to
active.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that activated it will be passed
as that parameter.

Set this property to None [https://docs.python.org/3.7/library/constants.html#None] (the default) to disable the event.

	
when_deactivated

	The function to run when the device changes state from active to
inactive.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that deactivated it will be
passed as that parameter.

Set this property to None [https://docs.python.org/3.7/library/constants.html#None] (the default) to disable the event.

	
when_held

	The function to run when the device has remained active for
hold_time seconds.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that activated will be passed
as that parameter.

Set this property to None [https://docs.python.org/3.7/library/constants.html#None] (the default) to disable the event.

	
when_pressed

	The function to run when the device changes state from inactive to
active.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that activated it will be passed
as that parameter.

Set this property to None [https://docs.python.org/3.7/library/constants.html#None] (the default) to disable the event.

	
when_released

	The function to run when the device changes state from active to
inactive.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that deactivated it will be
passed as that parameter.

Set this property to None [https://docs.python.org/3.7/library/constants.html#None] (the default) to disable the event.

6.2. Buzzer

[image: _images/buzzer.jpg]

Note

This is a Digital Component which connects to a Digital Port [D0-D7].

from time import sleep

from pitop import Buzzer

buzzer = Buzzer("D0")

buzzer.on() # Set buzzer sound on
print(buzzer.value) # Return 1 while the buzzer is on
sleep(2)

buzzer.off() # Set buzzer sound off
print(buzzer.value) # Return 0 while the buzzer is off
sleep(2)

buzzer.toggle() # Swap between on and off states
print(buzzer.value) # Return the current state of the buzzer

sleep(2)

buzzer.off()

	
class pitop.pma.Buzzer(port_name, name='buzzer')

	Encapsulates the behaviour of a simple buzzer that can be turned on and
off.

	Parameters

	
	port_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The ID for the port to which this component is connected

	name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – Component name, defaults to buzzer. Used to access this component when added to a pitop.Pitop object.

	
active_high

	When True [https://docs.python.org/3.7/library/constants.html#True], the value property is True [https://docs.python.org/3.7/library/constants.html#True] when the
device’s pin is high. When False [https://docs.python.org/3.7/library/constants.html#False] the
value property is True [https://docs.python.org/3.7/library/constants.html#True] when the device’s pin is low
(i.e. the value is inverted).

This property can be set after construction; be warned that changing it
will invert value (i.e. changing this property doesn’t change
the device’s pin state - it just changes how that state is
interpreted).

	
beep(on_time=1, off_time=1, n=None, background=True)

	Make the device turn on and off repeatedly.

	Parameters

	
	on_time (float [https://docs.python.org/3.7/library/functions.html#float]) – Number of seconds on. Defaults to 1 second.

	off_time (float [https://docs.python.org/3.7/library/functions.html#float]) – Number of seconds off. Defaults to 1 second.

	n (int [https://docs.python.org/3.7/library/functions.html#int] or None [https://docs.python.org/3.7/library/constants.html#None]) – Number of times to blink; None [https://docs.python.org/3.7/library/constants.html#None] (the default) means forever.

	background (bool [https://docs.python.org/3.7/library/functions.html#bool]) – If True [https://docs.python.org/3.7/library/constants.html#True] (the default), start a background thread to
continue blinking and return immediately. If False [https://docs.python.org/3.7/library/constants.html#False], only
return when the blink is finished (warning: the default value of
n will result in this method never returning).

	
blink(on_time=1, off_time=1, n=None, background=True)

	Make the device turn on and off repeatedly.

	Parameters

	
	on_time (float [https://docs.python.org/3.7/library/functions.html#float]) – Number of seconds on. Defaults to 1 second.

	off_time (float [https://docs.python.org/3.7/library/functions.html#float]) – Number of seconds off. Defaults to 1 second.

	n (int [https://docs.python.org/3.7/library/functions.html#int] or None [https://docs.python.org/3.7/library/constants.html#None]) – Number of times to blink; None [https://docs.python.org/3.7/library/constants.html#None] (the default) means forever.

	background (bool [https://docs.python.org/3.7/library/functions.html#bool]) – If True [https://docs.python.org/3.7/library/constants.html#True] (the default), start a background thread to
continue blinking and return immediately. If False [https://docs.python.org/3.7/library/constants.html#False], only
return when the blink is finished (warning: the default value of
n will result in this method never returning).

	
close()

	Shut down the device and release all associated resources. This
method can be called on an already closed device without raising an
exception.

This method is primarily intended for interactive use at the command
line. It disables the device and releases its pin(s) for use by another
device.

You can attempt to do this simply by deleting an object, but unless
you’ve cleaned up all references to the object this may not work (even
if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By
contrast, the close method provides a means of ensuring that the object
is shut down.

For example, if you have a buzzer connected to port D0, but then wish
to attach an LED instead:

>>> from pitop import Buzzer, LED
>>> bz = Buzzer("D0")
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED("D0")
>>> led.blink()

Device descendents can also be used as context managers using
the with [https://docs.python.org/3.7/reference/compound_stmts.html#with] statement. For example:

>>> from pitop import Buzzer, LED
>>> with Buzzer("D0") as bz:
... bz.on()
...
>>> with LED("D0") as led:
... led.on()
...

	
closed

	Returns True [https://docs.python.org/3.7/library/constants.html#True] if the device is closed (see the close()
method). Once a device is closed you can no longer use any other
methods or properties to control or query the device.

	
config

	Returns a dictionary with the set of parameters that can be used to
recreate an object.

	
classmethod from_config(config_dict)

	Creates an instance of a Recreatable object with parameters in the
provided dictionary.

	
classmethod from_file(path)

	Creates an instance of an object using the JSON file from the
provided path.

	
static import_class(module_name, class_name)

	Imports a class given a module and a class name.

	
is_active

	Returns True [https://docs.python.org/3.7/library/constants.html#True] if the device is currently active and
False [https://docs.python.org/3.7/library/constants.html#False] otherwise. This property is usually derived from
value. Unlike value, this is always a boolean.

	
off()

	Turns the device off.

	
on()

	Turns the device on.

	
own_state

	Representation of an object state that will be used to determine the
current state of an object.

	
pin

	The Pin that the device is connected to. This will be
None [https://docs.python.org/3.7/library/constants.html#None] if the device has been closed (see the
close() method). When dealing with GPIO pins, query
pin.number to discover the GPIO pin (in BCM numbering) that the
device is connected to.

	
print_config()

	

	
print_state()

	

	
save_config(path)

	Stores the set of parameters to recreate an object in a JSON
file.

	
source

	The iterable to use as a source of values for value.

	
source_delay

	The delay (measured in seconds) in the loop used to read values from
source. Defaults to 0.01 seconds which is generally sufficient
to keep CPU usage to a minimum while providing adequate responsiveness.

	
state

	Returns a dictionary with the state of the current object and all of
its children.

	
toggle()

	Reverse the state of the device. If it’s on, turn it off; if it’s off,
turn it on.

	
value

	Returns 1 if the device is currently active and 0 otherwise. Setting
this property changes the state of the device.

	
values

	An infinite iterator of values read from value.

6.3. Encoder Motor

Note

This is a Motor Component which connects to a MotorEncoder Port [M0-M3].

from time import sleep

from pitop import BrakingType, EncoderMotor, ForwardDirection

Setup the motor

motor = EncoderMotor("M0", ForwardDirection.COUNTER_CLOCKWISE)
motor.braking_type = BrakingType.COAST

Move in both directions

rpm_speed = 100
for _ in range(4):
 motor.set_target_rpm(rpm_speed)
 sleep(2)
 motor.set_target_rpm(-rpm_speed)
 sleep(2)

motor.stop()

	
class pitop.pma.EncoderMotor(port_name, forward_direction, braking_type=<BrakingType.BRAKE: 1>, wheel_diameter=0.075, name='encoder_motor')

	Represents a pi-top motor encoder component.

Note that pi-top motor encoders use a built-in closed-loop control system, that feeds the readings
from an encoder sensor to an PID controller. This controller will actively modify the motor’s current to move at the desired
speed or position, even if a load is applied to the shaft.

This internal controller is used when moving the motor through set_target_rpm or set_target_speed
methods, while using the set_power method will make the motor work in open-loop, not using the controller.

Note

Note that some methods allow to use distance and speed settings in meters and meters per second. These will only make
sense when using a wheel attached to the shaft of the motor.

The conversions between angle, rotations and RPM used by the motor to meters and meters/second are performed considering
the wheel_diameter parameter. This parameter defaults to the diameter of the wheel included with MMK.
If a wheel of different dimmensions is attached to the motor, you’ll need to measure it’s diameter, in order for these
methods to work properly.

	Parameters

	
	port_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The ID for the port to which this component is connected.

	forward_direction (ForwardDirection) – The type of rotation of the motor shaft that corresponds to forward motion.

	braking_type (BrakingType) – The braking type of the motor. Defaults to coast.

	wheel_diameter (int [https://docs.python.org/3.7/library/functions.html#int] or float [https://docs.python.org/3.7/library/functions.html#float]) – The diameter of the wheel attached to the motor.

	name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – Component name, defaults to encoder_motor. Used to access this component when added to a pitop.Pitop object.

	
backward(target_speed, distance=0.0)

	Run the wheel backwards at the desired speed in meters per second.

This method is a simple interface to move the wheel that wraps a call to set_target_speed,
specifying the back direction.

If desired, a distance to travel can also be specified in meters, after which the motor
will stop. Setting distance to 0 will set the motor to run indefinitely until stopped.

Note

Note that for this method to move the wheel the expected distance, the correct
wheel_circumference value needs to be used.

	Parameters

	
	target_speed (int [https://docs.python.org/3.7/library/functions.html#int] or float [https://docs.python.org/3.7/library/functions.html#float]) – Desired speed in m/s

	distance (int [https://docs.python.org/3.7/library/functions.html#int] or float [https://docs.python.org/3.7/library/functions.html#float]) – Total distance to travel in m. Set to 0 to run indefinitely.

	
braking_type

	Returns the type of braking used by the motor when it’s stopping
after a movement.

Setting this property will change the way the motor stops a movement:

	BrakingType.COAST will make the motor coast to a halt when stopped.

	BrakingType.BRAKE will cause the motor to actively brake when stopped.

	Parameters

	braking_type (BrakingType) – The braking type of the motor.

	
current_rpm

	Returns the actual RPM currently being achieved at the output shaft,
measured by the encoder sensor.

This value might differ from the target RPM set through
set_target_rpm.

	
current_speed

	Returns the speed currently being achieved by the motor in meters
per second.

This value may differ from the target speed set through
set_target_speed.

	
distance

	Returns the distance the wheel has travelled in meters.

This value depends on the correct wheel_circumference
value being set.

	
forward(target_speed, distance=0.0)

	Run the wheel forward at the desired speed in meters per second.

This method is a simple interface to move the motor that wraps a call to set_target_speed,
specifying the forward direction.

If desired, a distance to travel can also be specified in meters, after which the motor
will stop. Setting distance to 0 will set the motor to run indefinitely until stopped.

Note

Note that for this method to move the wheel the expected distance, the correct
wheel_circumference value needs to be used.

	Parameters

	
	target_speed (int [https://docs.python.org/3.7/library/functions.html#int] or float [https://docs.python.org/3.7/library/functions.html#float]) – Desired speed in m/s

	distance (int [https://docs.python.org/3.7/library/functions.html#int] or float [https://docs.python.org/3.7/library/functions.html#float]) – Total distance to travel in m. Set to 0 to run indefinitely.

	
forward_direction

	Represents the forward direction setting used by the motor.

Setting this property will determine on which direction the motor will turn
whenever a movement in a particular direction is requested.

	Parameters

	forward_direction (ForwardDirection) – The direction that corresponds to forward motion.

	
max_rpm

	Returns the approximate maximum RPM capable given the motor and gear
ratio.

	
max_speed

	The approximate maximum speed possible for the wheel attached to the
motor shaft, given the motor specs, gear ratio and wheel circumference.

This value depends on the correct wheel_circumference
value being set.

	
own_state

	Representation of an object state that will be used to determine the
current state of an object.

	
power()

	Get the current power of the motor.

Returns a value from -1.0 to +1.0, assuming the user is
controlling the motor using the set_power method (motor
is in control mode 0). If this is not the case, returns None.

	
rotation_counter

	Returns the total or partial number of rotations performed by the
motor shaft.

Rotations will increment when moving forward, and decrement when
moving backward. This value is a float with many decimal points
of accuracy, so can be used to monitor even very small turns of
the output shaft.

	
set_power(power, direction=<Direction.FORWARD: 1>)

	Turn the motor on at the power level provided, in the range -1.0 to.

+1.0, where:

	1.0: motor will turn with full power in the direction provided as argument.

	0.0: motor will not move.

	-1.0: motor will turn with full power in the direction contrary to direction.

Warning

Setting a power value out of range will cause the method to raise an
exception.

	Parameters

	
	power (int [https://docs.python.org/3.7/library/functions.html#int] or float [https://docs.python.org/3.7/library/functions.html#float]) – Motor power, in the range -1.0 to +1.0

	direction (Direction) – Direction to rotate the motor

	
set_target_rpm(target_rpm, direction=<Direction.FORWARD: 1>, total_rotations=0.0)

	Run the motor at the specified target_rpm RPM.

If desired, a number of full or partial rotations can also be set through the total_rotations
parameter. Once reached, the motor will stop. Setting total_rotations to 0 will set the
motor to run indefinitely until stopped.

If the desired RPM setting cannot be achieved, torque_limited will be set to True [https://docs.python.org/3.7/library/constants.html#True]
and the motor will run at the maximum possible RPM it is capable of for the instantaneous torque.
This means that if the torque lowers, then the RPM will continue to rise until it meets the
desired level.

Care needs to be taken here if you want to drive a vehicle forward in a straight line, as the motors
are not guaranteed to spin at the same rate if they are torque-limited.

Warning

Setting a target_rpm higher than the maximum allowed will cause the
method to throw an exception. To determine what the maximum possible target RPM for the motor
is, use the max_rpm method.

	Parameters

	
	target_rpm (int [https://docs.python.org/3.7/library/functions.html#int] or float [https://docs.python.org/3.7/library/functions.html#float]) – Desired RPM of output shaft

	direction (Direction) – Direction to rotate the motor. Defaults to forward.

	total_rotations (int [https://docs.python.org/3.7/library/functions.html#int] or float [https://docs.python.org/3.7/library/functions.html#float]) – Total number of rotations to be execute. Set to 0 to run indefinitely.

	
set_target_speed(target_speed, direction=<Direction.FORWARD: 1>, distance=0.0)

	Run the wheel at the specified target speed in meters per second.

If desired, a distance to travel can also be specified in meters, after which the motor
will stop. Setting distance to 0 will set the motor to run indefinitely until stopped.

Warning

Setting a target_speed higher than the maximum allowed will cause the
method to throw an exception. To determine what the maximum possible target speed for the motor
is, use the max_speed method.

Note

Note that for this method to move the wheel the expected distance, the correct
wheel_diameter value needs to be used.

	Parameters

	
	target_speed (int [https://docs.python.org/3.7/library/functions.html#int] or float [https://docs.python.org/3.7/library/functions.html#float]) – Desired speed in m/s

	direction (Direction) – Direction to rotate the motor. Defaults to forward.

	distance (int [https://docs.python.org/3.7/library/functions.html#int] or float [https://docs.python.org/3.7/library/functions.html#float]) – Total distance to travel in m. Set to 0 to run indefinitely.

	
stop()

	Stop the motor in all circumstances.

	
target_rpm()

	Get the desired RPM of the motor output shaft, assuming the user is
controlling the motor using set_target_rpm (motor is in
control mode 1).

If this is not the case, returns None.

	
torque_limited

	Check if the actual motor speed or RPM does not match the target
speed or RPM.

Returns a boolean value, True [https://docs.python.org/3.7/library/constants.html#True] if the motor is torque-
limited and False [https://docs.python.org/3.7/library/constants.html#False] if it is not.

	
wheel_circumference

	

	
wheel_diameter

	Represents the diameter of the wheel attached to the motor in
meters.

This parameter is important if using library functions to measure speed or distance, as these rely on
knowing the diameter of the wheel in order to function correctly.
Use one of the predefined pi-top wheel and tyre types, or define your own wheel size.

Note

Note the following diameters:

	pi-top MMK Standard Wheel: 0.060.0m

	pi-top MMK Standard Wheel with Rubber Tyre: 0.065m

	pi-top MMK Standard Wheel with tank track: 0.070m

	Parameters

	wheel_diameter (int [https://docs.python.org/3.7/library/functions.html#int] or float [https://docs.python.org/3.7/library/functions.html#float]) – Wheel diameter in meters.

6.3.1. Parameters

	
class pitop.pma.parameters.BrakingType

	Braking types.

	
BRAKE = 1

	

	
COAST = 0

	

	
class pitop.pma.parameters.ForwardDirection

	Forward directions.

	
CLOCKWISE = 1

	

	
COUNTER_CLOCKWISE = -1

	

	
class pitop.pma.parameters.Direction

	Directions.

	
BACK = -1

	

	
FORWARD = 1

	

6.4. LED

[image: _images/led_red.jpg]

Note

This is a Digital Component which connects to a Digital Port [D0-D7].

from time import sleep

from pitop import LED

led = LED("D2")

led.on()
print(led.is_lit)
sleep(1)

led.off()
print(led.is_lit)
sleep(1)

led.toggle()
print(led.is_lit)
sleep(1)

print(led.value) # Returns 1 is the led is on or 0 if the led is off

	
class pitop.pma.LED(port_name, name='led', color=None)

	Encapsulates the behaviour of an LED.

An LED (Light Emitting Diode) is a simple light source that can be controlled directly.

	Parameters

	
	port_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The ID for the port to which this component is connected

	name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – Component name, defaults to led. Used to access this component when added to a pitop.Pitop object.

	
active_high

	When True [https://docs.python.org/3.7/library/constants.html#True], the value property is True [https://docs.python.org/3.7/library/constants.html#True] when the
device’s pin is high. When False [https://docs.python.org/3.7/library/constants.html#False] the
value property is True [https://docs.python.org/3.7/library/constants.html#True] when the device’s pin is low
(i.e. the value is inverted).

This property can be set after construction; be warned that changing it
will invert value (i.e. changing this property doesn’t change
the device’s pin state - it just changes how that state is
interpreted).

	
blink(on_time=1, off_time=1, n=None, background=True)

	Make the device turn on and off repeatedly.

	Parameters

	
	on_time (float [https://docs.python.org/3.7/library/functions.html#float]) – Number of seconds on. Defaults to 1 second.

	off_time (float [https://docs.python.org/3.7/library/functions.html#float]) – Number of seconds off. Defaults to 1 second.

	n (int [https://docs.python.org/3.7/library/functions.html#int] or None [https://docs.python.org/3.7/library/constants.html#None]) – Number of times to blink; None [https://docs.python.org/3.7/library/constants.html#None] (the default) means forever.

	background (bool [https://docs.python.org/3.7/library/functions.html#bool]) – If True [https://docs.python.org/3.7/library/constants.html#True] (the default), start a background thread to
continue blinking and return immediately. If False [https://docs.python.org/3.7/library/constants.html#False], only
return when the blink is finished (warning: the default value of
n will result in this method never returning).

	
close()

	Shut down the device and release all associated resources. This
method can be called on an already closed device without raising an
exception.

This method is primarily intended for interactive use at the command
line. It disables the device and releases its pin(s) for use by another
device.

You can attempt to do this simply by deleting an object, but unless
you’ve cleaned up all references to the object this may not work (even
if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By
contrast, the close method provides a means of ensuring that the object
is shut down.

For example, if you have a buzzer connected to port D0, but then wish
to attach an LED instead:

>>> from pitop import Buzzer, LED
>>> bz = Buzzer("D0")
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED("D0")
>>> led.blink()

Device descendents can also be used as context managers using
the with [https://docs.python.org/3.7/reference/compound_stmts.html#with] statement. For example:

>>> from pitop import Buzzer, LED
>>> with Buzzer("D0") as bz:
... bz.on()
...
>>> with LED("D0") as led:
... led.on()
...

	
closed

	Returns True [https://docs.python.org/3.7/library/constants.html#True] if the device is closed (see the close()
method). Once a device is closed you can no longer use any other
methods or properties to control or query the device.

	
config

	Returns a dictionary with the set of parameters that can be used to
recreate an object.

	
classmethod from_config(config_dict)

	Creates an instance of a Recreatable object with parameters in the
provided dictionary.

	
classmethod from_file(path)

	Creates an instance of an object using the JSON file from the
provided path.

	
static import_class(module_name, class_name)

	Imports a class given a module and a class name.

	
is_active

	Returns True [https://docs.python.org/3.7/library/constants.html#True] if the device is currently active and
False [https://docs.python.org/3.7/library/constants.html#False] otherwise. This property is usually derived from
value. Unlike value, this is always a boolean.

	
is_lit

	Returns True [https://docs.python.org/3.7/library/constants.html#True] if the device is currently active and
False [https://docs.python.org/3.7/library/constants.html#False] otherwise. This property is usually derived from
value. Unlike value, this is always a boolean.

	
off()

	Turns the device off.

	
on()

	Turns the device on.

	
own_state

	Representation of an object state that will be used to determine the
current state of an object.

	
pin

	The Pin that the device is connected to. This will be
None [https://docs.python.org/3.7/library/constants.html#None] if the device has been closed (see the
close() method). When dealing with GPIO pins, query
pin.number to discover the GPIO pin (in BCM numbering) that the
device is connected to.

	
print_config()

	

	
print_state()

	

	
save_config(path)

	Stores the set of parameters to recreate an object in a JSON
file.

	
source

	The iterable to use as a source of values for value.

	
source_delay

	The delay (measured in seconds) in the loop used to read values from
source. Defaults to 0.01 seconds which is generally sufficient
to keep CPU usage to a minimum while providing adequate responsiveness.

	
state

	Returns a dictionary with the state of the current object and all of
its children.

	
toggle()

	Reverse the state of the device. If it’s on, turn it off; if it’s off,
turn it on.

	
value

	Returns 1 if the device is currently active and 0 otherwise. Setting
this property changes the state of the device.

	
values

	An infinite iterator of values read from value.

6.5. Light Sensor

[image: _images/light_sensor.jpg]

Note

This is a Analog Component which connects to a Analog Port [A0-A3].

from time import sleep

from pitop import LightSensor

light_sensor = LightSensor("A1")

while True:
 # Returns a value depending on the amount of light
 print(light_sensor.reading)
 sleep(0.1)

	
class pitop.pma.LightSensor(port_name, pin_number=1, name='light_sensor', number_of_samples=3)

	Encapsulates the behaviour of a light sensor module.

A simple analogue photo transistor is used to detect the intensity of the light striking
the sensor. The component contains a photoresistor which detects light intensity. The
resistance decreases as light intensity increases; thus the brighter the light, the
higher the voltage.

Uses an Analog-to-Digital Converter (ADC) to turn the analog reading from the sensor
into a digital value.

By default, the sensor uses 3 samples to report a reading, which takes around 0.5s.
This can be changed by modifying the parameter number_of_samples in the constructor.

	Parameters

	
	port_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The ID for the port to which this component is connected

	number_of_samples (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – Amount of sensor samples used to report a reading. Defaults to 3.

	name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – Component name, defaults to light_sensor. Used to access this component when added to a pitop.Pitop object.

	
own_state

	Representation of an object state that will be used to determine the
current state of an object.

	
reading

	Take a reading from the sensor.

	Returns

	A value representing the amount of light striking the sensor at the current time
from 0 to 999.

	Return type

	float [https://docs.python.org/3.7/library/functions.html#float]

	
value

	Get a simple binary value based on a reading from the device.

	Returns

	1 if the sensor is detecting any light, 0 otherwise

	Return type

	integer

6.6. Potentiometer

[image: _images/potentiometer.jpg]

Note

This is a Analog Component which connects to a Analog Port [A0-A3].

from time import sleep

from pitop import Potentiometer

potentiometer = Potentiometer("A3")

while True:
 # Returns the current position of the Potentiometer
 print(potentiometer.position)
 sleep(0.1)

	
class pitop.pma.Potentiometer(port_name, pin_number=1, name='potentiometer', number_of_samples=1)

	Encapsulates the behaviour of a potentiometer.

A potentiometer is a three-terminal resistor with a sliding or rotating contact that forms an
adjustable voltage divider. The component is used for measuring the electric potential (voltage)
between the two ‘end’ terminals. If only two of the terminals are used, one end and the wiper,
it acts as a variable resistor or rheostat. Potentiometers are commonly used to control
electrical devices such as volume controls on audio equipment.

Uses an Analog-to-Digital Converter (ADC) to turn the analog reading from the sensor
into a digital value.

	Parameters

	
	port_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The ID for the port to which this component is connected

	number_of_samples (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – Amount of sensor samples used to report a position. Defaults to 1.

	name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – Component name, defaults to potentiometer. Used to access this component when added to a pitop.Pitop object.

	
own_state

	Representation of an object state that will be used to determine the
current state of an object.

	
position

	Get the current reading from the sensor.

	Returns

	A value representing the potential difference (voltage) from 0 to 999.

	Return type

	float [https://docs.python.org/3.7/library/functions.html#float]

	
value

	Get a simple binary value based on a reading from the device.

	Returns

	1 if the sensor is detecting a potential difference (voltage), 0 otherwise

	Return type

	integer

6.7. Servo Motor

Note

This is a Motor Component which connects to a ServoMotor Port [S0-S3].

from time import sleep

from pitop import ServoMotor, ServoMotorSetting

servo = ServoMotor("S0")

Scan back and forward across a 180 degree angle range in 30 degree hops using default servo speed
for angle in range(90, -100, -30):
 print("Setting angle to", angle)
 servo.target_angle = angle
 sleep(0.5)

you can also set angle with a different speed than the default
servo_settings = ServoMotorSetting()
servo_settings.speed = 25

for angle in range(-90, 100, 30):
 print("Setting angle to", angle)
 servo_settings.angle = angle
 servo.setting = servo_settings
 sleep(0.5)

sleep(1)

Scan back and forward displaying current angle and speed
STOP_ANGLE = 80
TARGET_SPEED = 40

print("Sweeping using speed ", -TARGET_SPEED)
servo.target_speed = -TARGET_SPEED

current_state = servo.setting
current_angle = current_state.angle

sweep using the already set servo speed
servo.sweep()
while current_angle > -STOP_ANGLE:
 current_state = servo.setting
 current_angle = current_state.angle
 current_speed = current_state.speed
 print(f"current_angle: {current_angle} | current_speed: {current_speed}")
 sleep(0.05)

print("Sweeping using speed ", TARGET_SPEED)

you can also sweep specifying the speed when calling the sweep method
servo.sweep(speed=TARGET_SPEED)
while current_angle < STOP_ANGLE:
 current_state = servo.setting
 current_angle = current_state.angle
 current_speed = current_state.speed
 print(f"current_angle: {current_angle} | current_speed: {current_speed}")
 sleep(0.05)

	
class pitop.pma.ServoMotor(port_name, zero_point=0, name='servo')

	Represents a pi-top servo motor component.

Note that pi-top servo motors use an open-loop control system. As such, the output of the device (e.g.
the angle and speed of the servo horn) cannot be measured directly. This means that you can set a target
angle or speed for the servo, but you cannot read the current angle or speed.

	Parameters

	
	port_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The ID for the port to which this component is connected.

	zero_point (int [https://docs.python.org/3.7/library/functions.html#int]) – A user-defined offset from ‘true’ zero.

	name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – Component name, defaults to servo. Used to access this component when added to a pitop.Pitop object.

	
angle_range

	Returns a tuple with minimum and maximum possible angles where the
servo horn can be moved to.

If zero_point is set to 0 (default), the angle range
will be (-90, 90).

	
current_angle

	Returns the current angle that the servo motor is at.

Note

If you need synchronized angle and speed values, use ServoMotor.state() instead, this will return both
current angle and current speed at the same time.

	Returns

	float value of the current angle of the servo motor in degrees.

	
current_speed

	Returns the current speed the servo motor is at.

Note

If you need synchronized angle and speed values, use ServoMotor.state() instead, this will return both
current angle and current speed at the same time.

	Returns

	float value of the current speed of the servo motor in deg/s.

	
own_state

	Representation of an object state that will be used to determine the
current state of an object.

	
setting

	Returns the current state of the servo motor, giving current angle
and current speed.

	Returns

	:class:’ServoMotorSetting` object that has angle and speed attributes.

	
smooth_acceleration

	Gets whether or not the servo is configured to use a linear
acceleration profile to ramp speed at start and end of cycle.

	Returns

	boolean value of the acceleration mode

	
stop()

	Stop servo at its current position.

	Returns

	None

	
sweep(speed=None)

	Moves the servo horn from the current position to one of the servo
motor limits (maximum/minimum possible angle), moving at the specified
speed. The speed value must be a number from -100.0 to 100.0 deg/s.

The sweep direction is given by the speed.

Setting a speed value higher than zero will move the horn to the maximum angle (90 degrees by default),
while a value less than zero will move it to the minimum angle (-90 degress by default).

Warning

Using a speed out of the valid speed range will cause the method to raise an exception.

	Parameters

	speed (int [https://docs.python.org/3.7/library/functions.html#int] or float [https://docs.python.org/3.7/library/functions.html#float]) – The target speed at which to move the servo horn, from -100 to 100 deg/s.

	
target_angle

	Returns the last target angle that has been set.

	Returns

	float value of the target angle of the servo motor in deg.

	
target_speed

	Returns the last target speed that has been set.

	Returns

	float value of the target speed of the servo motor in deg/s.

	
zero_point

	Represents the servo motor angle that the library treats as ‘zero’.
This value can be anywhere in the range of -90 to +90.

For example, if the zero_point were set to be -30, then the valid range
of values for setting the angle would be -60 to +120.

Warning

Setting a zero point out of the range of -90 to 90 will cause the method
to raise an exception.

6.8. Sound Sensor

[image: _images/sound_sensor.jpg]

Note

This is a Analog Component which connects to a Analog Port [A0-A3].

from time import sleep

from pitop import SoundSensor

sound_sensor = SoundSensor("A2")

while True:
 # Returns reading the amount of sound in the room
 print(sound_sensor.reading)
 sleep(0.1)

	
class pitop.pma.SoundSensor(port_name, pin_number=1, name='sound_sensor', number_of_samples=1)

	Encapsulates the behaviour of a sound sensor.

A sound sensor component is typically a simple microphone that detects the vibrations
of the air entering the sensor and produces an analog reading based on the amplitude
of these vibrations.

Uses an Analog-to-Digital Converter (ADC) to turn the analog reading from the sensor
into a digital value.

	Parameters

	
	port_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The ID for the port to which this component is connected

	number_of_samples (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – Amount of sensor samples used to report a reading. Defaults to 1.

	name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – Component name, defaults to sound_sensor. Used to access this component when added to a pitop.Pitop object.

	
own_state

	Representation of an object state that will be used to determine the
current state of an object.

	
reading

	Take a reading from the sensor. Uses a builtin peak detection system
to retrieve the sound level.

	Returns

	A value representing the volume of sound detected by the sensor at the current time from 0 to 500.

	Return type

	float [https://docs.python.org/3.7/library/functions.html#float]

	
value

	Get a simple binary value based on a reading from the device.

	Returns

	1 if the sensor is detecting any sound, 0 otherwise

	Return type

	integer

6.9. Ultrasonic Sensor

[image: _images/ultrasonic_sensor.jpg]

Note

This is a Digital Component which connects to a Digital Port [D0-D7].

from time import sleep

from pitop import UltrasonicSensor

distance_sensor = UltrasonicSensor("D3", threshold_distance=0.2)

Set up functions to print when an object crosses 'threshold_distance'
distance_sensor.when_in_range = lambda: print("in range")
distance_sensor.when_out_of_range = lambda: print("out of range")

while True:
 # Print the distance (in meters) to an object in front of the sensor
 print(distance_sensor.distance)
 sleep(0.1)

	
class pitop.pma.UltrasonicSensor(port_name, queue_len=5, max_distance=3, threshold_distance=0.3, partial=False, name='ultrasonic')

	
	
close()

	Shut down the device and release all associated resources. This
method can be called on an already closed device without raising an
exception.

This method is primarily intended for interactive use at the command
line. It disables the device and releases its pin(s) for use by another
device.

You can attempt to do this simply by deleting an object, but unless
you’ve cleaned up all references to the object this may not work (even
if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By
contrast, the close method provides a means of ensuring that the object
is shut down.

For example, if you have a buzzer connected to port D0, but then wish
to attach an LED instead:

>>> from pitop import Buzzer, LED
>>> bz = Buzzer("D0")
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED("D0")
>>> led.blink()

Device descendents can also be used as context managers using
the with [https://docs.python.org/3.7/reference/compound_stmts.html#with] statement. For example:

>>> from pitop import Buzzer, LED
>>> with Buzzer("D0") as bz:
... bz.on()
...
>>> with LED("D0") as led:
... led.on()
...

	
distance

	Returns the current distance measured by the sensor in meters.

Note
that this property will have a value between 0 and
max_distance.

	
in_range

	

	
max_distance

	The maximum distance that the sensor will measure in meters.

This value is specified in the constructor and is used to
provide the scaling for the value
attribute. When distance is equal to
max_distance, value will be
1.

	
own_state

	Representation of an object state that will be used to determine the
current state of an object.

	
pin

	

	
threshold_distance

	The distance, measured in meters, that will trigger the
when_in_range and when_out_of_range events when
crossed. This is simply a meter-scaled variant of the usual
threshold attribute.

	
value

	Returns a value between 0, indicating that something is either
touching the sensor or is sufficiently near that the sensor can’t tell
the difference, and 1, indicating that something is at or beyond the
specified max_distance.

	
wait_for_in_range(timeout=None)

	

	
wait_for_out_of_range(timeout=None)

	

	
when_in_range

	

	
when_out_of_range

	

7. API - pi-top Peripheral Devices

7.1. pi-topPROTO+

[image: _images/pi-topPROTO+.jpg]
This module provides 2 classes - a simple way to use a pi-topPROTO+’s onboard ADC (analog-to-digital converter), and another to use it as a distance sensor.

These classes will work with original pi-top, pi-topCEED and pi-top [3]. pi-top [4] does not support the pi-topPROTO+’s modular rail connector, and so will not work.

7.1.1. Using the pi-topPROTO+ as a Distance Sensor

from time import sleep

from pitop.protoplus import DistanceSensor

ultrasonic = DistanceSensor()

while True:
 print(ultrasonic.distance)
 sleep(1)

7.1.2. Class Reference: pi-topPROTO+ Distance Sensor

	
class pitop.protoplus.sensors.DistanceSensor(trigger_gpio_pin=23, echo_gpio_pin=27)

	Encapsulates the behaviour of a simple DistanceSensor that can be turned
on and off.

	Parameters

	
	trigger_gpio_pin (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – GPIO pin for trigger input

	echo_gpio_pin (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – GPIO pin for echo response

	
close()

	Shut down the device and release all associated resources. This
method can be called on an already closed device without raising an
exception.

This method is primarily intended for interactive use at the command
line. It disables the device and releases its pin(s) for use by another
device.

You can attempt to do this simply by deleting an object, but unless
you’ve cleaned up all references to the object this may not work (even
if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By
contrast, the close method provides a means of ensuring that the object
is shut down.

For example, if you have a buzzer connected to port D0, but then wish
to attach an LED instead:

>>> from pitop import Buzzer, LED
>>> bz = Buzzer("D0")
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED("D0")
>>> led.blink()

Device descendents can also be used as context managers using
the with [https://docs.python.org/3.7/reference/compound_stmts.html#with] statement. For example:

>>> from pitop import Buzzer, LED
>>> with Buzzer("D0") as bz:
... bz.on()
...
>>> with LED("D0") as led:
... led.on()
...

	
get_distance()

	

	
get_raw_distance()

	

	
raw_distance

	

7.1.3. Using the pi-topPROTO+’s onboard ADC

from time import sleep

from pitop.protoplus import ADCProbe

temp_sensor = ADCProbe()

while True:
 print(temp_sensor.read_value(1))
 sleep(0.5)

7.1.4. Class Reference: pi-topPROTO+ ADC Probe

	
class pitop.protoplus.adc.ADCProbe(i2c_device_name='/dev/i2c-1')

	
	
poll(delay=0.5)

	

	
read_all()

	

	
read_value(channel)

	

7.2. pi-topPULSE

[image: _images/pi-topPULSE.jpg]
This module provides a simple way to use a pi-topPULSE, and will work with any Raspberry Pi and/or pi-top.

The hardware representation of each color is 5 bits (i.e. only 32 different values).
Without gamma correction, this would mean the actual color value
changes only every 8th color intensity value.
This module applies gamma correction, which means that pixels with seemingly
different intensities actually have the same.

7.2.1. Using the pi-topPULSE’s microphone

from time import sleep

from pitop.pulse import ledmatrix, microphone

def set_bit_rate_to_unsigned_8():
 print("Setting bit rate to 8...")
 microphone.set_bit_rate_to_unsigned_8()

def set_bit_rate_to_signed_16():
 print("Setting bit rate to 16...")
 microphone.set_bit_rate_to_signed_16()

def set_sample_rate_to_16khz():
 print("Setting sample rate to 16KHz...")
 microphone.set_sample_rate_to_16khz()

def set_sample_rate_to_22khz():
 print("Setting sample rate to 22KHz...")
 microphone.set_sample_rate_to_22khz()

def pause(length):
 ledmatrix.off()
 sleep(length)

def record(record_time, output_file, pause_time=1):
 print("Recording audio for " + str(record_time) + "s...")
 ledmatrix.set_all(255, 0, 0)
 ledmatrix.show()
 microphone.record()
 sleep(record_time)
 microphone.stop()
 ledmatrix.off()
 microphone.save(output_file, True)
 print("Saved to " + output_file)
 print("")
 pause(pause_time)

set_sample_rate_to_22khz()

set_bit_rate_to_unsigned_8()
record(5, "/tmp/test22-8.wav")

set_bit_rate_to_signed_16()
record(5, "/tmp/test22-16.wav")

set_sample_rate_to_16khz()

set_bit_rate_to_unsigned_8()
record(5, "/tmp/test16-8.wav")

set_bit_rate_to_signed_16()
record(5, "/tmp/test16-16.wav")

7.2.2. Using the pi-topPULSE’s LED matrix: Test colors

import time

from pitop.pulse import ledmatrix

def show_map(r, g, b):
 for x in range(0, 7):
 for y in range(0, 7):
 z = (float(y) + 7.0 * float(x)) / 49.0
 rr = int(z * r)
 gg = int(z * g)
 bb = int(z * b)
 ledmatrix.set_pixel(x, y, rr, gg, bb)
 ledmatrix.show()

ledmatrix.rotation(0)
ledmatrix.clear()

Display 49 different color intensities
for r in range(0, 2):
 for g in range(0, 2):
 for b in range(2):
 if r + g + b > 0:
 rr = 255 * r
 gg = 255 * g
 bb = 255 * b
 print(rr, gg, bb)
 show_map(rr, gg, bb)
 time.sleep(5)

ledmatrix.clear()
ledmatrix.show()

7.2.3. Using the pi-topPULSE’s LED matrix: Fancy Light Show!

import colorsys
import math

from pitop.pulse import ledmatrix

s_width, s_height = ledmatrix.get_shape()

twisty swirly goodness
def swirl(x, y, step):
 x -= s_width / 2
 y -= s_height / 2

 dist = math.sqrt(pow(x, 2) + pow(y, 2)) / 2.0
 angle = (step / 10.0) + (dist * 1.5)
 s = math.sin(angle)
 c = math.cos(angle)

 xs = x * c - y * s
 ys = x * s + y * c

 r = abs(xs + ys)
 r = r * 64.0
 r -= 20

 return (r, r + (s * 130), r + (c * 130))

roto-zooming checker board

def checker(x, y, step):
 x -= s_width / 2
 y -= s_height / 2

 angle = step / 10.0
 s = math.sin(angle)
 c = math.cos(angle)

 xs = x * c - y * s
 ys = x * s + y * c

 xs -= math.sin(step / 200.0) * 40.0
 ys -= math.cos(step / 200.0) * 40.0

 scale = step % 20
 scale /= 20
 scale = (math.sin(step / 50.0) / 8.0) + 0.25

 xs *= scale
 ys *= scale

 xo = abs(xs) - int(abs(xs))
 yo = abs(ys) - int(abs(ys))
 val = (
 0
 if (math.floor(xs) + math.floor(ys)) % 2
 else 1
 if xo > 0.1 and yo > 0.1
 else 0.5
)

 r, g, b = colorsys.hsv_to_rgb((step % 255) / 255.0, 1, val)

 return (r * 255, g * 255, b * 255)

weeee waaaah

def blues_and_twos(x, y, step):
 x -= s_width / 2
 y -= s_height / 2

 scale = math.sin(step / 6.0) / 1.5
 r = math.sin((x * scale) / 1.0) + math.cos((y * scale) / 1.0)
 b = math.sin(x * scale / 2.0) + math.cos(y * scale / 2.0)
 g = r - 0.8
 g = 0 if g < 0 else g

 b -= r
 b /= 1.4

 return (r * 255, (b + g) * 255, g * 255)

rainbow search spotlights

def rainbow_search(x, y, step):
 xs = math.sin((step) / 100.0) * 20.0
 ys = math.cos((step) / 100.0) * 20.0

 scale = ((math.sin(step / 60.0) + 1.0) / 5.0) + 0.2
 r = math.sin((x + xs) * scale) + math.cos((y + xs) * scale)
 g = math.sin((x + xs) * scale) + math.cos((y + ys) * scale)
 b = math.sin((x + ys) * scale) + math.cos((y + ys) * scale)

 return (r * 255, g * 255, b * 255)

zoom tunnel

def tunnel(x, y, step):
 speed = step / 100.0
 x -= s_width / 2
 y -= s_height / 2

 xo = math.sin(step / 27.0) * 2
 yo = math.cos(step / 18.0) * 2

 x += xo
 y += yo

 if y == 0:
 if x < 0:
 angle = -(math.pi / 2)
 else:
 angle = math.pi / 2
 else:
 angle = math.atan(x / y)

 if y > 0:
 angle += math.pi

 angle /= 2 * math.pi # convert angle to 0...1 range

 shade = math.sqrt(math.pow(x, 2) + math.pow(y, 2)) / 2.1
 shade = 1 if shade > 1 else shade

 angle += speed
 depth = speed + (math.sqrt(math.pow(x, 2) + math.pow(y, 2)) / 10)

 col1 = colorsys.hsv_to_rgb((step % 255) / 255.0, 1, 0.8)
 col2 = colorsys.hsv_to_rgb((step % 255) / 255.0, 1, 0.3)

 col = col1 if int(abs(angle * 6.0)) % 2 == 0 else col2

 td = 0.3 if int(abs(depth * 3.0)) % 2 == 0 else 0

 col = (col[0] + td, col[1] + td, col[2] + td)

 col = (col[0] * shade, col[1] * shade, col[2] * shade)

 return (col[0] * 255, col[1] * 255, col[2] * 255)

effects = [tunnel, rainbow_search, checker, swirl]

step = 0
while True:
 for i in range(500):
 for y in range(s_height):
 for x in range(s_width):
 r, g, b = effects[0](x, y, step)
 if i > 400:
 r2, g2, b2 = effects[-1](x, y, step)

 ratio = (500.00 - i) / 100.0
 r = r * ratio + r2 * (1.0 - ratio)
 g = g * ratio + g2 * (1.0 - ratio)
 b = b * ratio + b2 * (1.0 - ratio)
 r = int(max(0, min(255, r)))
 g = int(max(0, min(255, g)))
 b = int(max(0, min(255, b)))
 ledmatrix.set_pixel(x, y, r, g, b)
 step += 1

 ledmatrix.show()

 effect = effects.pop()
 effects.insert(0, effect)

7.2.4. Using the pi-topPULSE’s LED matrix: Showing CPU temperature

import time

from pitop.pulse import ledmatrix

def getCpuTemperature():
 tempFile = open("/sys/class/thermal/thermal_zone0/temp")
 cpu_temp = tempFile.read()
 tempFile.close()
 return int(int(cpu_temp) / 1000)

OFFSET_LEFT = 0
OFFSET_TOP = 2

fmt: off
NUMS = [1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, # 0
 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, # 1
 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, # 2
 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, # 3
 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, # 4
 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, # 5
 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, # 6
 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, # 7
 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, # 8
 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1] # 9
fmt: on

Displays a single digit (0-9)
def show_digit(val, xd, yd, r, g, b):
 offset = val * 15
 for p in range(offset, offset + 15):
 xt = p % 3
 yt = (p - offset) // 3
 ledmatrix.set_pixel(xt + xd, 7 - yt - yd, r * NUMS[p], g * NUMS[p], b * NUMS[p])
 ledmatrix.show()

Displays a two-digits positive number (0-99)
def show_number(val, r, g, b):
 abs_val = abs(val)
 tens = abs_val // 10
 units = abs_val % 10
 if abs_val > 9:
 show_digit(tens, OFFSET_LEFT, OFFSET_TOP, r, g, b)
 show_digit(units, OFFSET_LEFT + 4, OFFSET_TOP, r, g, b)

###
MAIN
###

ledmatrix.rotation(0)
ledmatrix.clear()

lastTemperature = -1

try:
 while True:
 temperature = getCpuTemperature()
 if temperature != lastTemperature:
 if temperature < 60:
 show_number(temperature, 0, 255, 0)
 elif temperature < 70:
 show_number(temperature, 255, 255, 0)
 else:
 show_number(temperature, 255, 0, 0)
 lastemperature = temperature
 time.sleep(2)

except KeyboardInterrupt:
 ledmatrix.clear()
 ledmatrix.show()

7.2.5. Using the pi-topPULSE’s LED matrix: Showing CPU usage

import time

from pitop.pulse import ledmatrix

last_work = [0, 0, 0, 0]
last_idle = [0, 0, 0, 0]

def get_cpu_rates():
 global last_work, last_idle
 rate = [0, 0, 0, 0]
 f = open("/proc/stat", "r")
 line = ""
 for i in range(0, 4):
 while not "cpu" + str(i) in line:
 line = f.readline()
 # print(line)
 splitline = line.split()
 work = int(splitline[1]) + int(splitline[2]) + int(splitline[3])
 idle = int(splitline[4])
 diff_work = work - last_work[i]
 diff_idle = idle - last_idle[i]
 rate[i] = float(diff_work) / float(diff_idle + diff_work)
 last_work[i] = work
 last_idle[i] = idle
 f.close()
 return rate

ledmatrix.rotation(0)

try:
 while True:
 rate = get_cpu_rates()
 ledmatrix.clear()
 for i in range(0, 4):
 level = int(6.99 * rate[i])
 if level < 4:
 r = 0
 g = 255
 b = 0
 elif level < 6:
 r = 255
 g = 255
 b = 6
 else:
 r = 255
 g = 0
 b = 0
 for y in range(0, level + 1):
 ledmatrix.set_pixel(2 * i, y, r, g, b)

 ledmatrix.show()
 time.sleep(1)

except KeyboardInterrupt:
 ledmatrix.clear()
 ledmatrix.show()

7.2.6. Module Reference: pi-topPULSE Configuration

	
pitop.pulse.configuration.disable_device()

	

	
pitop.pulse.configuration.eeprom_enabled()

	Get whether the eeprom is enabled.

	
pitop.pulse.configuration.enable_device()

	

	
pitop.pulse.configuration.mcu_enabled()

	Get whether the onboard MCU is enabled.

	
pitop.pulse.configuration.microphone_sample_rate_is_16khz()

	Get whether the microphone is set to record at a sample rate of
16,000Hz.

	
pitop.pulse.configuration.microphone_sample_rate_is_22khz()

	Get whether the microphone is set to record at a sample rate of
22,050Hz.

	
pitop.pulse.configuration.reset_device_state(enable)

	reset_device_state: Deprecated

	
pitop.pulse.configuration.set_microphone_sample_rate_to_16khz()

	Set the appropriate I2C bits to enable 16,000Hz recording on the
microphone.

	
pitop.pulse.configuration.set_microphone_sample_rate_to_22khz()

	Set the appropriate I2C bits to enable 22,050Hz recording on the
microphone.

	
pitop.pulse.configuration.speaker_enabled()

	Get whether the speaker is enabled.

7.2.7. Module Reference: pi-topPULSE LED Matrix

	
pitop.pulse.ledmatrix.brightness(new_brightness)

	Set the display brightness between 0.0 and 1.0.

	Parameters

	new_brightness – Brightness from 0.0 to 1.0 (default 1.0)

	
pitop.pulse.ledmatrix.clear()

	Clear the buffer.

	
pitop.pulse.ledmatrix.flip_h()

	Flips the grid horizontally.

	
pitop.pulse.ledmatrix.flip_v()

	Flips the grid vertically.

	
pitop.pulse.ledmatrix.get_brightness()

	Get the display brightness value.

Returns a float between 0.0 and 1.0.

	
pitop.pulse.ledmatrix.get_pixel(x, y)

	Get the RGB value of a single pixel.

	Parameters

	
	x – Horizontal position from 0 to 7

	y – Veritcal position from 0 to 7

	
pitop.pulse.ledmatrix.get_shape()

	Returns the shape (width, height) of the display.

	
pitop.pulse.ledmatrix.off()

	Clear the buffer and immediately update pi-topPULSE.

	
pitop.pulse.ledmatrix.rotation(new_rotation=0)

	Set the display rotation.

	Parameters

	new_rotation – Specify the rotation in degrees: 0, 90, 180 or 270

	
pitop.pulse.ledmatrix.run_tests()

	Runs a series of tests to check the LED board is working as expected.

	
pitop.pulse.ledmatrix.set_all(r, g, b)

	Set all pixels to a specific color.

	
pitop.pulse.ledmatrix.set_debug_print_state(debug_enable)

	Enable/disable debug prints.

	
pitop.pulse.ledmatrix.set_pixel(x, y, r, g, b)

	Set a single pixel to RGB color.

	Parameters

	
	x – Horizontal position from 0 to 7

	y – Veritcal position from 0 to 7

	r – Amount of red from 0 to 255

	g – Amount of green from 0 to 255

	b – Amount of blue from 0 to 255

	
pitop.pulse.ledmatrix.show()

	Update pi-topPULSE with the contents of the display buffer.

	
pitop.pulse.ledmatrix.start(new_update_rate=0.1)

	Starts a timer to automatically refresh the LEDs.

	
pitop.pulse.ledmatrix.stop()

	Stops the timer that automatically refreshes the LEDs.

7.2.8. Module Reference: pi-topPULSE Microphone

	
pitop.pulse.microphone.is_recording()

	Returns recording state of the pi-topPULSE microphone.

	
pitop.pulse.microphone.record()

	Start recording on the pi-topPULSE microphone.

	
pitop.pulse.microphone.save(file_path, overwrite=False)

	Saves recorded audio to a file.

	
pitop.pulse.microphone.set_bit_rate_to_signed_16()

	Set bitrate to double that of device default by scaling the signal.

	
pitop.pulse.microphone.set_bit_rate_to_unsigned_8()

	Set bitrate to device default.

	
pitop.pulse.microphone.set_sample_rate_to_16khz()

	Set the appropriate I2C bits to enable 16,000Hz recording on the
microphone.

	
pitop.pulse.microphone.set_sample_rate_to_22khz()

	Set the appropriate I2C bits to enable 22,050Hz recording on the
microphone.

	
pitop.pulse.microphone.stop()

	Stops recording audio.

7.2.9. Advanced: EEPROM

The pi-topPULSE contains an EEPROM which was programmed using this settings file.
during factory production.

See the Raspberry Pi Foundation’s HAT Github
repository [https://github.com/raspberrypi/hats] for more information.

8. API - System Peripheral Devices

The pi-top Python SDK provides classes which represent devices, including some that can be used by generic devices, such as USB cameras. These classes are intended to simplify using these common system peripheral devices.

8.1. USB Camera

This class provides an easy way to:

	save image and video files

	directly access camera frames

	process frames in the background (via callback)

It is easy to make use of some pre-written video processors, such as motion detection.

It is also possible to make use of this class to read frames from a directory of images,
removing the need for a stream of images from physical hardware. This can be useful for
testing, or simulating a real camera.

from time import sleep

from pitop import Camera

Record a 10s video to ~/Camera/

cam = Camera()

cam.start_video_capture()
sleep(10)
cam.stop_video_capture()

By default, camera frames are of PIL.Image.Image [https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image] type (using the Pillow module),
which provides a standardized way of working with the image.
These Image objects use raw, RGB-ordered pixels.

It is also possible to use OpenCV standard format, if desired. This may be useful if you are
intending to do your own image processing with OpenCV. The OpenCV format uses raw, BGR-ordered
pixels in a NumPy numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] object. This can be done by setting the camera’s format
property to “OpenCV”:

from pitop import Camera

c = Camera()
c.format = "OpenCV"

This can be also be done by passing the format to the camera’s constructor:

from pitop import Camera

c = Camera(format="OpenCV")

8.1.1. Using a USB Camera to Access Image Data

from pitop import Camera

cam = Camera()

while True:
 image = cam.get_frame()
 print(image.getpixel((0, 0)))

8.1.2. Using a USB Camera to Capture Video

from time import sleep

from pitop import Camera

Record a 10s video to ~/Camera/

cam = Camera()

cam.start_video_capture()
sleep(10)
cam.stop_video_capture()

8.1.3. Adding Motion Detection to a USB Camera

from datetime import datetime
from time import localtime, sleep, strftime

from pitop import Camera

Example code for Camera
Records videos of any motion captured by the camera

cam = Camera()

last_motion_detected = None

def motion_detected():
 global last_motion_detected

 last_motion_detected = datetime.now().timestamp()

 if cam.is_recording() is False:
 print("Motion detected! Starting recording...")
 output_file_name = f"/home/pi/Desktop/My Motion Recording {strftime('%Y-%m-%d %H:%M:%S', localtime(last_motion_detected))}.avi"
 cam.start_video_capture(output_file_name=output_file_name)

 while (datetime.now().timestamp() - last_motion_detected) < 3:
 sleep(1)

 cam.stop_video_capture()
 print(f"Recording completed - saved to {output_file_name}")

print("Motion detector starting...")
cam.start_detecting_motion(
 callback_on_motion=motion_detected, moving_object_minimum_area=350
)

sleep(60)

cam.stop_detecting_motion()
print("Motion detector stopped")

8.1.4. Processing Camera Frame

from PIL import ImageDraw

from pitop import Camera

cam = Camera()

def draw_red_cross_over_image(im):
 # Use Pillow to draw a red cross over the image
 draw = ImageDraw.Draw(im)
 draw.line((0, 0) + im.size, fill=128, width=5)
 draw.line((0, im.size[1], im.size[0], 0), fill=128, width=5)
 return im

im = draw_red_cross_over_image(cam.get_frame())
im.show()

8.1.5. Processing Camera Frame Stream with OpenCV (Convert to grayscale)

from time import sleep

import cv2

from pitop import Camera

cam = Camera(format="OpenCV")

def show_gray_image(image):
 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
 cv2.imshow("frame", gray)
 cv2.waitKey(1) # Necessary to show image

Use callback function for 60s
cam.on_frame = show_gray_image
sleep(60)

Use get_frame indefinitely
try:
 while True:
 show_gray_image(cam.get_frame())

except KeyboardInterrupt:
 cv2.destroyAllWindows()

8.1.6. Ball Color Detection with OpenCV

from signal import pause

import cv2

from pitop.camera import Camera
from pitop.processing.algorithms import BallDetector

def process_frame(frame):
 detected_balls = ball_detector(frame, color=["red", "green", "blue"])

 red_ball = detected_balls.red
 if red_ball.found:
 print(f"Red ball center: {red_ball.center}")
 print(f"Red ball radius: {red_ball.radius}")
 print(f"Red ball angle: {red_ball.angle}")
 print()

 green_ball = detected_balls.green
 if green_ball.found:
 print(f"Green ball center: {green_ball.center}")
 print(f"Green ball radius: {green_ball.radius}")
 print(f"Green ball angle: {green_ball.angle}")
 print()

 blue_ball = detected_balls.blue
 if blue_ball.found:
 print(f"Blue ball center: {blue_ball.center}")
 print(f"Blue ball radius: {blue_ball.radius}")
 print(f"Blue ball angle: {blue_ball.angle}")
 print()

 cv2.imshow("Image", detected_balls.robot_view)
 cv2.waitKey(1)

ball_detector = BallDetector()
camera = Camera(resolution=(640, 480))
camera.on_frame = process_frame

pause()

8.1.7. Class Reference: USB Camera

	
class pitop.camera.Camera(index=None, resolution=(640, 480), camera_type=<CameraTypes.USB_CAMERA: 0>, path_to_images='', format='PIL', flip_top_bottom: bool = False, flip_left_right: bool = False, rotate_angle=0, name='camera')

	Provides a variety of high-level functionality for using the PMA USB
Camera, including capturing images and video, and processing image data
from the camera.

	Parameters

	index (int [https://docs.python.org/3.7/library/functions.html#int]) – ID of the video capturing device to open.
Passing None will cause the backend to autodetect the
available video capture devices and attempt to use them.

	
capture_image(output_file_name='')

	Capture a single frame image to file.

Note

If no output_file_name argument is provided, images will be stored in ~/Camera.

	Parameters

	output_file_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The filename into which to write the image.

	
current_frame(format=None)

	Returns the latest frame captured by the camera. This method is non-
blocking and can return the same frame multiple times.

By default the returned image is formatted as a PIL.Image.Image [https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image].

	Parameters

	format (string) – DEPRECATED. Set ‘camera.format’ directly, and call this function directly instead.

	
format

	

	
classmethod from_file_system(path_to_images: str)

	Alternative classmethod to create an instance of a Camera
object using a FileSystemCamera

	
classmethod from_usb(index=None)

	Alternative classmethod to create an instance of a Camera
object using a UsbCamera

	
get_frame(format=None)

	Returns the next frame captured by the camera. This method blocks
until a new frame is available.

	Parameters

	format (string) – DEPRECATED. Set ‘camera.format’ directly, and call this function directly instead.

	
is_detecting_motion()

	Returns True if motion detection mode is enabled.

	
is_recording()

	Returns True if recording mode is enabled.

	
own_state

	Representation of an object state that will be used to determine the
current state of an object.

	
start_detecting_motion(callback_on_motion, moving_object_minimum_area=300)

	Begin processing image data from the camera, attempting to detect
motion. When motion is detected, call the function passed in.

Warning

The callback function can take either no arguments or only one, which will be used to provide the image back
to the user when motion is detected.
If a callback with another signature is received, the method will raise an exception.

	Parameters

	
	callback_on_motion (function) – A callback function that will be called when motion is detected.

	moving_object_minimum_area (int [https://docs.python.org/3.7/library/functions.html#int]) – The sensitivity of the motion detection, measured as the area of pixels changing between frames that constitutes motion.

	
start_handling_frames(callback_on_frame, frame_interval=1, format=None)

	Begin calling the passed callback with each new frame, allowing for
custom processing.

Warning

The callback function can take either no arguments or only one, which will be used to provide the image back
to the user.
If a callback with another signature is received, the method will raise an exception.

	Parameters

	
	callback_on_frame (function) – A callback function that will be called every frame_interval camera frames.

	frame_interval (int [https://docs.python.org/3.7/library/functions.html#int]) – The callback will run every frame_interval frames, decreasing the frame rate of processing. Defaults to 1.

	format (string) – DEPRECATED. Set ‘camera.format’ directly, and call this function directly instead.

	
start_video_capture(output_file_name='', fps=20.0, resolution=None)

	Begin capturing video from the camera.

Note

If no output_file_name argument is provided, video will be stored in ~/Camera.

	Parameters

	
	output_file_name (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The filename into which to write the video.

	fps (int [https://docs.python.org/3.7/library/functions.html#int] or float [https://docs.python.org/3.7/library/functions.html#float]) – The framerate to use for the captured video. Defaults to 20.0 fps

	resolution (tuple [https://docs.python.org/3.7/library/stdtypes.html#tuple]) – The resolution to use for the captured video. Defaults to (640, 368)

	
stop_detecting_motion()

	Stop running the motion detection processing.

Does nothing unless start_detecting_motion has been
called.

	
stop_handling_frames()

	Stops handling camera frames.

Does nothing unless start_handling_frames has been
called.

	
stop_video_capture()

	Stop capturing video from the camera.

Does nothing unless start_video_capture has been
called.

8.2. Keyboard Button

This class makes it easy to handle a keyboard button in the same way as a
GPIO-based button.

You can listen for any standard keyboard key input. For example, using a or A will provide the ability to ‘listen’ for the A-key being pressed - with or without shift.

Warning

This class depends on pynput, which interfaces with Xorg to handle key press events. This means that this component cannot be used via SSH, or in a headless environment (that is, without a desktop environment).

Note

The DISPLAY environment variable is required to be set in order for this component to work.

Note

If your code is being run from a terminal window, then the key presses will be captured in the terminal output. This can cause confusion and issues around reading output.

from time import sleep

from pitop import KeyboardButton

def on_up_pressed():
 print("up pressed")

def on_up_released():
 print("up released")

def on_down_pressed():
 print("down pressed")

def on_down_released():
 print("down released")

def on_left_pressed():
 print("left pressed")

def on_left_released():
 print("left released")

def on_right_pressed():
 print("right pressed")

def on_right_released():
 print("right released")

keyboard_btn_up = KeyboardButton("up")
keyboard_btn_down = KeyboardButton("down")
keyboard_btn_left = KeyboardButton("left")
keyboard_btn_right = KeyboardButton("right")
keyboard_btn_uppercase_z = KeyboardButton("Z")

Methods will be called when key is pressed:

keyboard_btn_up.when_pressed = on_up_pressed
keyboard_btn_up.when_released = on_up_released
keyboard_btn_down.when_pressed = on_down_pressed
keyboard_btn_down.when_released = on_down_released
keyboard_btn_left.when_pressed = on_left_pressed
keyboard_btn_left.when_released = on_left_released
keyboard_btn_right.when_pressed = on_right_pressed
keyboard_btn_right.when_released = on_right_released

Or alternatively you can "poll" for key presses:

while True:
 if keyboard_btn_uppercase_z.is_pressed is True:
 print("Z pressed!")

 sleep(0.1)

8.2.1. Class Reference: KeyboardButton

	
class pitop.keyboard.KeyboardButton(key)

	
	
is_pressed

	Get or set the button state as a boolean value.

	Return type

	bool [https://docs.python.org/3.7/library/functions.html#bool]

	
when_pressed

	Get or set the ‘when pressed’ button state callback function. When
set, this callback function will be invoked when this event happens.

	Parameters

	callback (Function) – Callback function to run when a button is pressed.

	
when_released

	Get or set the ‘when released’ button state callback function. When
set, this callback function will be invoked when this event happens.

	Parameters

	callback (Function) – Callback function to run when a button is released.

8.2.2. Special Key Names

You can listen for the following special keys by passing their names when creating an instance
of KeyboardButton.

	Identifier

	Description

	alt

	A generic Alt key. This is a modifier.

	alt_l

	The left Alt key. This is a modifier.

	alt_r

	The right Alt key. This is a modifier.

	alt_gr

	The AltGr key. This is a modifier.

	backspace

	The Backspace key.

	caps_lock

	The CapsLock key.

	cmd

	A generic command button.

	cmd_l

	The left command button. On PC keyboards, this corresponds to the
Super key or Windows key, and on Mac keyboards it corresponds to the Command
key. This may be a modifier.

	cmd_r

	The right command button. On PC keyboards, this corresponds to the
Super key or Windows key, and on Mac keyboards it corresponds to the Command
key. This may be a modifier.

	ctrl

	A generic Ctrl key. This is a modifier.

	ctrl_l

	The left Ctrl key. This is a modifier.

	ctrl_r

	The right Ctrl key. This is a modifier.

	delete

	The Delete key.

	down

	A down arrow key.

	up

	An up arrow key.

	left

	A left arrow key.

	right

	A right arrow key.

	end

	The End key.

	enter

	The Enter or Return key.

	esc

	The Esc key.

	home

	The Home key.

	page_down

	The PageDown key.

	page_up

	The PageUp key.

	shift

	A generic Shift key. This is a modifier.

	shift_l

	The left Shift key. This is a modifier.

	shift_r

	The right Shift key. This is a modifier.

	space

	The Space key.

	tab

	The Tab key.

	insert

	The Insert key. This may be undefined for some platforms.

	menu

	The Menu key. This may be undefined for some platforms.

	num_lock

	The NumLock key. This may be undefined for some platforms.

	pause

	The Pause/Break key. This may be undefined for some platforms.

	print_screen

	The PrintScreen key. This may be undefined for some platforms.

	scroll_lock

	The ScrollLock key. This may be undefined for some platforms.

	f1

	The F1 key

	f2

	The F2 key

	f3

	The F3 key

	f4

	The F4 key

	f5

	The F5 key

	f6

	The F6 key

	f7

	The F7 key

	f8

	The F8 key

	f9

	The F9 key

	f10

	The F10 key

	f11

	The F11 key

	f12

	The F12 key

	f13

	The F13 key

	f14

	The F14 key

	f15

	The F15 key

	f16

	The F16 key

	f17

	The F17 key

	f18

	The F18 key

	f19

	The F19 key

	f20

	The F20 key

9. Command-Line Tools (CLI)

9.1. ‘pi-top’ Command

Utility to interact with pi-top hardware.

pi-top [-h] {battery,devices,display,support,imu,oled} ...

Where:

	-h, --help

	Show a help message and exits

	{battery,devices,display,help,imu,oled}

	
	battery:

	Get battery information from a pi-top

	devices:

	Get information about device and attached pi-top hardware

	display:

	Communicate and control the device’s display

	support:

	Find support resources

	imu:

	Expansion Plate IMU utilities

	oled:

	Quickly display text in pi-top [4]’s miniscreen OLED display

9.1.1. pi-top battery

If the pi-top device has an internal battery, it will report its status.

pi-top battery [-h] [-s] [-c] [-t] [-w] [-v]

Where:

	-h, --help

	Show a help message and exits

	-s, --charging-state

	Optional. Return the charging state of the battery as an number, where:

	-1: No pi-top battery detected

	0: Discharging

	1: Charging

	2: Full battery

	-c, --capacity

	Optional. Get battery capacity percentage %

	-t, --time-remaining

	Optional. Get the time (in minutes) to full or time to empty based on the charging state

	-w, --wattage

	Optional. Get the wattage (mAh) of the battery

	-v, --verbose

	If no argument is provided, this option will be used by default.

Report all the information available about the battery (charging state, capacity, time remaining
and wattage)

Example:

pi@pi-top:~ $ pi-top battery
Charging State: 0
Capacity: 42
Time Remaining: 104
Wattage: -41

9.1.2. pi-top display

This command provides a way to control different display settings on pi-top devices with a built-in screen.

pi-top display [-h] {brightness,backlight,timeout}

Where:

	-h, --help

	Show a help message and exits

	brightness

	Control display brightness

	backlight

	Control display backlight

	timeout

	Set the timeout before the screen blanks in seconds (0 to disable)

9.1.2.1. pi-top display brightness

Request or change the value of the display’s brightness.

Note

This only works for the original pi-top, pi-topCEED and pi-top [3]. The pi-top [4] Full HD Touch Display uses hardware buttons to control the brightness, and is not controllable via this SDK.

pi-top display brightness [-h] [-v] [-i] [-d]
 [brightness_value]

Where:

	-h, --help

	Show a help message and exits

	-v, --verbose

	Increase verbosity of output

	-i, --increment_brightness

	Increment screen brightness level

	-d, --decrement_brightness

	Decrement screen brightness level

	brightness_value

	Set screen brightness level; [1-10] on pi-top [1] and pi-topCEED,
[1-16] for pi-top [3]

Using pi-top display brightness without arguments will return the current brightness value.

Note

The brightness_value range differs for different devices: for pi-top [3] is from 0-16; pi-top [1] and CEED is 0-10.

Example:

pi@pi-top:~ $ pi-top display brightness
16

9.1.2.2. pi-top display backlight

Using pi-top display backlight without arguments will return the current backlight status.

pi-top display backlight [-h] [-v] [{0,1}]

Where:

	-h, --help

	Show a help message and exits

	-v, --verbose

	Increase verbosity of output

	{0,1}

	Set the screen backlight state [0-1]

9.1.2.3. pi-top display blank_time

Set the time before the screen goes blank on inactivity periods.

Using pi-top display blank_time without arguments will return the screen’s timeout value.

pi-top display timeout [-h] [-v] [timeout_value]

Where:

	-h, --help

	Show a help message and exits

	-v, --verbose

	Increase verbosity of output

	timeout_value

	Timeout value in seconds. Set to 0 to disable.

9.1.3. pi-top devices

Finds useful information about the system and the attached devices that are being managed by pi-topd.

Running pi-top devices on its own will report back the current brightness value.

pi-top devices [-h] [--quiet] [--name-only] {hub,peripherals}

Where:

	-h, --help

	Show a help message and exits

	--quiet, -q

	Display only the connected devices

	--name-only, -n

	Display only the name of the devices, without further information

	hub

	Get the name of the active pi-top device

	peripherals

	Get information about attached pi-top peripherals

Example:

pi@pi-top:~ $ pi-top devices
HUB ===
pi-top [4] (v5.4)
PERIPHERALS ===
[✓] pi-top [4] Expansion Plate (v21.5)
[] pi-top Touchscreen
[] pi-top Keyboard
[] pi-topPULSE
[] pi-topSPEAKER (v1) - Left channel
[] pi-topSPEAKER (v1) - Right channel
[] pi-topSPEAKER (v1) - Mono
[] pi-topSPEAKER (v2)

pi@pi-top:~ $ pt devices peripherals
[✓] pi-top [4] Expansion Plate (v21.5)
[] pi-top Touchscreen
[] pi-top Keyboard
[] pi-topPULSE
[] pi-topSPEAKER (v1) - Left channel
[] pi-topSPEAKER (v1) - Right channel
[] pi-topSPEAKER (v1) - Mono
[] pi-topSPEAKER (v2)

pi@pi-top:~ $ pt devices hub –name-only
pi-top [4]

9.1.4. pi-top imu

Utility to calibrate the IMU included in the Expansion Plate.

pi-top imu calibrate [-h] [-p PATH]

Where:

	-h, --help

	Show a help message and exits

	-p PATH, --path PATH

	Directory for storing calibration graph data

Example:

pi-top imu calibrate --path /tmp

9.1.5. pi-top oled

Configure and display text/images directly onto pi-top [4]’s miniscreen OLED display.

pi-top oled [-h] {display,spi}

Where:

	-h, --help

	Show a help message and exits

	display

	Display text and images into the OLED

	spi

	Control the SPI bus used by OLED

9.1.5.1. pi-top oled display

Display text and images directly onto pi-top [4]’s miniscreen OLED display.

pi-top oled display [-h] [--timeout TIMEOUT] [--font-size FONT_SIZE] text

Where:

	-h, --help

	Show a help message and exits

	-t, --timeout TIMEOUT

	set the timeout in seconds

	--font-size FONT_SIZE

	set the font size

	text

	set the text to write to screen

Example:

pi@pi-top:~ $ pi-top oled display "hey!" -t 5

9.1.5.2. pi-top oled spi

Control the SPI bus used by the OLED. When using pi-top oled spi without arguments, the SPI bus currently used by the OLED will be returned.

pi-top oled spi [-h] {0,1}

Where:

	-h, --help

	Show a help message and exits

	{0,1}

	Optional. Set the SPI bus to be used by OLED. Valid options: 0 or 1

Example:

pi@pi-top:~ $ pi-top oled spi
1

pi@pi-top:~ $ pi-top oled spi 0

pi@pi-top:~ $ pi-top oled spi
0

9.1.6. pi-top support

Find information about support topics for your device.

pi-top support [-h] {links,health_check} ...

Where:

	-h, --help

	Show a help message and exits

	{links,health_check}

	Subcommands, please refer to the next sections.

9.1.6.1. pi-top support links

Find resources to learn how to use your device and get help if needed.

pi-top support links [-h] {docs,help}

Where:

	-h, --help

	Show a help message and exits

	{docs,help}

	docs: Print links to pi-top documentation

help: Print links to places where to look for help

Example:

$ pi-top support links docs
 ===
 DOCS
 ===
 [✓] pi-top Python SDK documentation: online version, recommended
 https://docs.pi-top.com/python-sdk/
 [✓] pi-top Python SDK documentation: offline version
 /usr/share/doc/python3-pitop/html/index.html

 pi@pi-top:~ $ pi-top support links
 ===
 DOCS
 ===
 [✓] pi-top Python SDK documentation: online version, recommended
 https://docs.pi-top.com/python-sdk/
 [✓] pi-top Python SDK documentation: offline version
 /usr/share/doc/python3-pitop/html/index.html
 ===
 OTHER
 ===
 [✓] Knowledge Base: Find answers to commonly asked questions
 https://knowledgebase.pi-top.com/
 [✓] Forum: Discuss and search through support topics.
 https://forum.pi-top.com/

9.1.6.2. pi-top support health_check

Perform a system wide check to help troubleshooting any problems with pi-top software and hardware.

pi-top support health_check

10. 🧪 Labs - Experimental APIs ⚠️

Note

The pi-top Python SDK Labs are a set of classes which are being provided as
experiments in exciting new ways to interact with your device.

Warning

Everything in Labs is subject to change - so use at your own risk!

10.1. Web

This Web API has been created with the goal of giving users the ability to
easily create a web application that runs directly on the pi-top that can
easily offer a dynamic, interactive interface for controlling the pi-top.

The Web API provides a selection of web server interfaces,
as well as a selection of prebuilt features known as Blueprints
to be used with these servers.

For examples of how to use this, check out the labs examples directory on GitHub [https://github.com/pi-top/pi-top-Python-SDK/tree/master/examples/labs].

10.1.1. Servers

For simple static web apps or ground-up customisation, use WebServer.

If you would like a ‘batteries included’ WebServer that makes it easy to interact with your pi-top, use WebController.

For a quick way to control your pi-top [4] Robotics Kit, use RoverWebController, which offers a preconfigured but customisable WebController for rover-style robots.

10.1.1.1. WebServer

The WebServer class is used to create a zero-config server that can:

	serve static files and templates

	handle requests

	handle WebSocket connections

WebServer is a preconfigured gevent WSGIServer [http://www.gevent.org/api/gevent.pywsgi.html#gevent.pywsgi.WSGIServer], due to this it can be started and
stopped just like a gevent BaseServer [http://www.gevent.org/api/gevent.baseserver.html#gevent.baseserver.BaseServer]:

from pitop.labs import WebServer

server = WebServer()

start server in the background
server.start()

stop server that has been started in the background
server.stop()

start server and wait until interrupted
server.serve_forever()

WebServer serves static files and templates found in the working directory
automatically. The entrypoint file is always index.html. All html files
found are considered to be Jinja templates [https://flask.palletsprojects.com/en/1.1.x/tutorial/templates/], this means that if you have a
file layout.html in the same directory as your WebServer:

<html>
 <head>
 <title>My Web App</title>
 </head>
 <body>
 {% block body %}
 {% endblock %}
 </body>
</html>

It is possible to use it as template for other html files. For example
index.html can extend layout.html:

{% extends 'layout.html' %}

{% block body %}
 <h1>My Custom Body</h1>
{% endblock %}

To add routes you can use the underlying Flask [https://flask.palletsprojects.com/en/1.1.x/api/#flask.Flask] app’s route decorator [https://flask.palletsprojects.com/en/1.1.x/api/#flask.Flask.route]:

from pitop.labs import WebServer

server = WebServer()

@server.app.route('/ping')
def ping():
 return 'pong'

server.serve_forever()

WebSocket routes can be added by using the route decorator provided by
Flask Sockets [https://github.com/heroku-python/flask-sockets]:

from pitop.labs import WebServer

server = WebServer()

@server.sockets.route('/ws')
def ws(socket):
 while not socket.closed:
 message = socket.receive()
 socket.send(message)

server.serve_forever()

The server port defaults to 8070 but can be customised:

from pitop.labs import WebServer

server = WebServer(port=8071)

It is also possible to customise the Flask [https://flask.palletsprojects.com/en/1.1.x/api/#flask.Flask] app by passing your own into the
app keyword argument:

from pitop.labs import WebServer
from flask import Flask

server = WebServer(app=Flask(__name__))

WebServer is fully compatible with Flask blueprints [https://flask.palletsprojects.com/en/1.1.x/blueprints/], which can be passed to
the blueprints keyword argument:

from pitop.labs import WebServer
from flask import Blueprint

WebServer(blueprints=[
 Blueprint('custom', __name__)
])

We provide a number of premade blueprints:

	BaseBlueprint

	WebComponentsBlueprint

	MessagingBlueprint

	VideoBlueprint

By default WebServer uses the BaseBlueprint

Warning

When using WebServer in a multithreaded project you must use
gevent threading [http://www.gevent.org/api/gevent.threading.html]. This is because using Python standard library threading
while using a gevent server can result in unexpected behaviour, or may not
work at all. See the dashboard example [https://github.com/pi-top/pi-top-Python-SDK/tree/configurable-web-labs/examples/labs/dashboard/main.py] for a basic idea of how gevent
threading can be used.

10.1.1.2. WebController

The WebController class is subclass of WebServer that uses the
ControllerBlueprint. It exists as a convenience class so that
blueprints are not required to be able to build simple web controllers.

from pitop import Camera
from pitop.labs import WebController

camera = Camera()

def on_dinner_change(data):
 print(f'dinner is now {data}')

server = WebController(
 get_frame=camera.get_frame,
 message_handlers={'dinner_changed': on_dinner_change}
)

server.serve_forever()

See the ControllerBlueprint reference for more detail.

10.1.1.3. RoverWebController

The RoverWebController class is subclass of WebServer that uses the
RoverControllerBlueprint. It exists as a convenience class so that
blueprints are not required to build simple rover web controllers.

from pitop import Pitop, Camera, DriveController, PanTiltController
from pitop.labs import RoverWebController

rover = Pitop()
rover.add_component(Camera())
rover.add_component(DriveController())
rover.add_component(PanTiltController())

server = RoverWebController(
 get_frame=rover.camera.get_frame,
 drive=rover.drive,
 pan_tilt=rover.pan_tilt
)

server.serve_forever()

See the RoverControllerBlueprint reference for more detail.

10.1.2. Blueprints

10.1.2.1. BaseBlueprint

BaseBlueprint provides a layout and styles that are the base of the
templates found in other blueprints. It adds a base.html template which
has the following structure:

<html>
 <head>
 <title>{% block title %}{% endblock %}</title>
 {% block head %}
 <link rel="stylesheet" href="/base/index.css"></link>
 {% endblock %}
 </head>

 <body>
 {% block body %}
 <header> {% block header %}{% endblock %} </header>
 <main> {% block main %}{% endblock %} </main>
 <footer> {% block footer %}{% endblock %} </footer>
 {% endblock %}
 </body>
</html>

The base.html adds some basic styles and variables to the page by
linking the index.css static file.

:root {
 --background-color: #00B2A2
}

body {
 background-color: var(--background-color);
 margin: 0;
 padding: 0;
}

Adding the BaseBlueprint to a WebServer is done as follows:

from pitop.labs import WebServer, BaseBlueprint

server = WebServer(blueprints=[
 BaseBlueprint()
])

server.serve_forever()

Note: WebServer uses BaseBlueprint by default, so the above is only necessary if
you are using BaseBlueprint with other blueprints.

Then you are able to extend the base.html in your other html files:

{% extends 'base.html' %}

{% block title %}Custom Page{% endblock %}

{% block head %}
 <!-- call super() to add index.css -->
 {{ super() }}
 <link rel="styles" href="custom-styles.css"></link>
{% endblock %}

{% block header %}

{% endblock %}

{% block main %}
 <section>Section One</section>
 <section>Section Two</section>
{% endblock %}

{% block footer %}
 Contact Info: 123456789
{% endblock %}

If you want to use the static files provided without extending the
base.html template you can do so by adding them to the page yourself:

<html>
 <head>
 <link rel="stylesheet" href="/base/index.css"></link>
 </head>
 <body>
 </body>
</html>

10.1.2.2. WebComponentsBlueprint

WebComponentsBlueprint provides a set of Web Components [https://developer.mozilla.org/en-US/docs/Web/Web_Components] for adding complex
elements to the page.

Adding the WebComponentsBlueprint to a WebServer is done as follows:

from pitop.labs import WebServer, WebComponentsBlueprint

server = WebServer(blueprints=[
 WebComponentsBlueprint()
])

server.serve_forever()

To add the components to the page WebComponentsBlueprint provides a setup template
setup-components.html that can be included in the head of your
page

<head>
 {% include "setup-webcomponents.html" %}
</head>

Currently the only component included is the joystick-component, which
acts a wrapper around nippleJS [https://yoannmoi.net/nipplejs/].

<joystick-component
 mode="static"
 size="200"
 position="relative"
 positionTop="100"
 positionLeft="100"
 positionRight=""
 positionBottom=""
 onmove="console.log(data)"
 onend="console.log(data)"
></joystick-component>

To add the joystick-component to the page without using templates you can add it
to the page by adding the nipplejs.min.js and
joystick-component.js scripts to the head of your page:

<head>
 <script type="text/javascript" src="/webcomponents/vendor/nipplejs.min.js"></script>
 <script type="text/javascript" src="/webcomponents/joystick-component.js"></script>
</head>

10.1.2.3. MessagingBlueprint

MessagingBlueprint is used to communicate between your python code and the page.

Adding the MessagingBlueprint to a WebServer is done as follows:

from pitop.labs import WebServer, MessagingBlueprint

server = WebServer(blueprints=[
 MessagingBlueprint()
])

server.serve_forever()

To add messaging to the page MessagingBlueprint provides a setup template
setup-messaging.html that can be included in the head of your
page:

<head>
 {% include "setup-messaging.html" %}
</head>

This adds a JavaScript [https://developer.mozilla.org/en-US/docs/Web/JavaScript] function publish to the page, which you can use
to send JavaScript Objects [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Grammar_and_types#object_literals] to your WebServer. The messages must have a type,
and can optionally have some data.

<select
 id="dinner-select"
 onchange="publish({ type: 'dinner_changed', data: this.value })"
>
 <option value="tacos">Tacos</option>
 <option value="spaghetti">Spaghetti</option>
</select>

To receive the messages sent by publish you can pass a
message_handlers dictionary to MessagingBlueprint. The keys of
message_handlers correspond to the type of the message and the
value must be a function that handles the message, a ‘message handler’. The
message handler is passed the message’s data value as it’s first
argument.

from pitop.labs import WebServer, MessagingBlueprint

def on_dinner_change(data):
 print(f'dinner is now {data}')

messaging = MessagingBlueprint(message_handlers={
 'dinner_changed': on_dinner_change
})

server = WebServer(blueprints=[messaging])
server.serve_forever()

The second argument of a message handler is a send function which
can send a message back to the page:

def on_dinner_change(data, send):
 print(f'dinner is now {data}')
 send({ 'type': 'dinner_received' })

To receive messages sent from a message handler the MessagingBlueprint also adds
a JavaScript function subscribe to the page:

<script>
 subscribe((message) => {
 if (message.type === 'dinner_received') {
 console.log('Dinner Received!')
 }
 })
</script>

Another way of sending messages to the page is to use the MessagingBlueprint’s
broadcast method:

from pitop import Button
from pitop.labs import WebServer, MessagingBlueprint

button = Button('D1')

def on_dinner_change(data):
 print(f'dinner is now {data}')

messaging = MessagingBlueprint(message_handlers={
 'dinner_changed': on_dinner_change
})

def reset():
 messaging.broadcast({ 'type': 'reset' })

button.on_press = reset

server = WebServer(blueprints=[messaging])
server.serve_forever()

This is received by the same subscribe function as before:

<script>
 subscribe((message) => {
 if (message.type === 'reset') {
 console.log('Reset')
 }
 })
</script>

There is one difference between broadcast and send:
broadcast sends the message to every client whereas send only
responds to the client that sent the message being handled.

10.1.2.4. VideoBlueprint

VideoBlueprint adds the ability to add a video feed from your python code to the
page.

Adding the VideoBlueprint to a WebServer is done as follows:

from pitop import Camera
from pitop.labs import WebServer, VideoBlueprint

camera = Camera()

server = WebServer(blueprints=[
 VideoBlueprint(get_frame=camera.get_frame)
])

server.serve_forever()

To add video styles to the page VideoBlueprint provides a setup template
setup-video.html that can be included in the head of your
page:

<head>
 {% include "setup-video.html" %}
</head>

This adds a set of classes that can be used to style your video:

.background-video {
 height: 100vh;
 position: fixed;
 top: 0;
 left: 50%;
 transform: translateX(-50%);
 z-index: -1;
}

In order to render the video on the page you must use an img tag with
the src attribute of video.mjpg:

<body>

</body>

It is also possible to add multiple VideoBlueprints to a WebServer:

from pitop import Camera
from pitop.labs import WebServer, VideoBlueprint

camera_one = Camera(index=0)
camera_two = Camera(index=1)

server = WebServer(blueprints=[
 VideoBlueprint(name="video-one", get_frame=camera_one.get_frame),
 VideoBlueprint(name="video-two", get_frame=camera_two.get_frame)
])

server.serve_forever()

This makes it possible to to add multiple video feeds to the page, where the
src attribute uses the name of the VideoBlueprint with a .mjpg
extension:

<body>

</body>

If you want to use the static files on your page without using templates you can
do so by adding them to the page yourself:

<head>
 <link rel="stylesheet" href="/video/styles.css"></link>
</head>

10.1.2.5. ControllerBlueprint

ControllerBlueprint combines blueprints that are useful in creating web apps
that interact with your pi-top. The blueprints it combines are the
BaseBlueprint, WebComponentsBlueprint,
MessagingBlueprint and VideoBlueprint.

from pitop import Camera
from pitop.labs import WebServer, ControllerBlueprint

camera = Camera()

def on_dinner_change(data):
 print(f'dinner is now {data}')

server = WebServer(blueprints=[
 ControllerBlueprint(
 get_frame=camera.get_frame,
 message_handlers={'dinner_changed': on_dinner_change}
)
])

server.serve_forever()

To simplify setup ControllerBlueprint provides a base-controller.html
template which includes all the setup snippets for it’s children blueprints:

{% extends "base.html" %}

{% block title %}
 Web Controller
{% endblock %}

{% block head %}
 {{ super() }}
 {% include "setup-video.html" %}
 {% include "setup-messaging.html" %}
 {% include "setup-webcomponents.html" %}
{% endblock %}

base-controller.html extends base.html, this means you can use
blocks defined in base.html when extending base-controller.html:

{% extends "base-controller.html" %}

{% block title %}My WebController{% endblock %}

{% block head %}
 <!-- call super() to setup blueprints -->
 {{ super() }}
 <link rel="stylesheet" href="custom-styles.css"></link>
{% endblock %}

{% block main %}
 <h1>Video</h1>

{% endblock %}

10.1.2.6. RoverControllerBlueprint

RoverControllerBlueprint uses the ControllerBlueprint to create a
premade web controller specifically built for rover projects.

from pitop import Pitop, Camera
from pitop.labs import WebServer, RoverControllerBlueprint

rover = Pitop()
rover.add_component(Camera())
rover.add_component(DriveController())
rover.add_component(PanTiltController())

server = WebServer(blueprints=[
 RoverControllerBlueprint(
 get_frame=rover.camera.get_frame,
 drive=rover.drive,
 pan_tilt=rover.pan_tilt
)
])

server.serve_forever()

RoverControllerBlueprint provides a page template base-rover.html which
has a background video and two joysticks:

[image: _images/rover.jpg]
By default the right joystick is used to drive the rover around and the left
joystick controls the pan tilt mechanism. The drive keyword argument is
required, but the pan_tilt keyword argument is optional; if it is not
passed the left joystick is not rendered.

It is possible to customise the page by extending the base-rover.html
template:

{% extends "base-rover.html" %}

{% block title %}My Rover Controller{% endblock %}

{% block main %}
 <!-- call super() to keep video and joysticks -->
 {{ super() }}

 <button onclick="publish({ type: 'clicked' })"></button>
{% endblock %}

It is also possible to customise the message handlers used by the
RoverControllerBlueprint, for example to swap the joysticks so the left drives
the rover and the right controls pan tilt:

from pitop import Camera, DriveController, PanTiltController, Pitop
from pitop.labs import RoverWebController
from pitop.labs.web.blueprints.rover import drive_handler, pan_tilt_handler

rover = Pitop()
rover.add_component(DriveController())
rover.add_component(PanTiltController())
rover.add_component(Camera())

rover_controller = RoverWebController(
 get_frame=rover.camera.get_frame,
 message_handlers={
 "left_joystick": lambda data: drive_handler(rover.drive, data),
 "right_joystick": lambda data: pan_tilt_handler(rover.pan_tilt, data),
 },
)

rover_controller.serve_forever()

Note that when left_joystick or right_joystick are in
message_handlers the pan_tilt and drive arguments do not
need to be passed respectively.

11. More Information

	11.1. Frequently Asked Questions
	11.1.1. How does this SDK work?

	11.1.2. What is PMA?

	11.1.3. I keep getting an Exception - what is the problem?

	11.1.4. Where did this SDK come from?

	11.1.5. I was using an older version of the Python libraries. How can I update to use this SDK?

	11.1.6. I lost my miniscreen menu - where is it?

	11.2. API Changes

	11.3. Contributing

	11.4. References

	11.5. Requirements

	11.6. License

For an alphabetized list of terms used in this SDK with links, check out the Index.

11.1. Frequently Asked Questions

11.1.1. How does this SDK work?

11.1.2. What is PMA?

11.1.3. I keep getting an Exception - what is the problem?

11.1.4. Where did this SDK come from?

Note: epoch version

11.1.5. I was using an older version of the Python libraries. How can I update to use this SDK?

Check out the Python SDK Migration [https://github.com/pi-top/pi-top-Python-SDK-Migration-Support] GitHub repository for more information about this.

You may also find it helpful to check out the examples to see how to use the new components.

11.1.6. I lost my miniscreen menu - where is it?

Check out Key Concepts: pi-top [4] Miniscreen for useful information about how this works.

11.2. API Changes

This section aims to outline key changes made between versions, to support
upgrading.

11.3. Contributing

Check out the Contributing to pi-topOS article in the pi-top knowledge base [https://knowledgebase.pi-top.com/knowledge/contributing-to-pi-top-os] to learn how to contribute.

11.4. References

	pi-top’s Knowledge Base [https://knowledgebase.pi-top.com/]

	pi-top’s Forum [https://forum.pi-top.com/]

	gpiozero [https://gpiozero.readthedocs.io/]

	imageio [https://imageio.readthedocs.io/en/stable/]

	numpy [https://numpy.readthedocs.io/en/latest/]

	luma [https://luma-core.readthedocs.io/en/latest/]

	Pillow [https://pillow.readthedocs.io/en/latest/]

11.5. Requirements

The following Debian packages are required for this library to work:

	Package Name

	Usage

	alsa-utils

	Used for configuring the system audio; such as setting the correct audio card when connecting a pi-topSPEAKER.

	coreutils

	Used to perform basic OS operations and commands; such as ls and chmod

	fonts-droid-fallback

	Minimum essential font used by the OLED screen.

	i2c-tools

	Communicate with pi-top I2C devices.

	pi-topd

	Allows communication with pi-top’s hub; such as getting battery state.
This package installs a systemd service that needs to be running for this library to work properly

	raspi-config

	Required to communicate and set parameters to the Raspberry Pi.

11.6. License

Copyright 2020 CEED Ltd.

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Version 2.0, January 2004
http://www.apache.org/licenses/

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pitop	

 	
 	
 pitop.pulse.configuration	

 	
 	
 pitop.pulse.ledmatrix	

 	
 	
 pitop.pulse.microphone	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

A

 	
 	active_high (pitop.pma.Buzzer attribute)

 	(pitop.pma.LED attribute)

 	
 	active_time (pitop.pma.Button attribute)

 	ADCProbe (class in pitop.protoplus.adc)

 	angle_range (pitop.pma.ServoMotor attribute)

B

 	
 	BACK (pitop.pma.parameters.Direction attribute)

 	backlight (pitop.display.Display attribute)

 	backward() (pitop.pma.EncoderMotor method)

 	Battery (class in pitop.battery)

 	beep() (pitop.pma.Buzzer method)

 	blank() (pitop.display.Display method)

 	blanking_timeout (pitop.display.Display attribute)

 	blink() (pitop.pma.Buzzer method)

 	(pitop.pma.LED method)

 	
 	bottom_left (pitop.miniscreen.Miniscreen attribute)

 	bottom_right (pitop.miniscreen.Miniscreen attribute)

 	bounding_box (pitop.miniscreen.Miniscreen attribute)

 	BRAKE (pitop.pma.parameters.BrakingType attribute)

 	braking_type (pitop.pma.EncoderMotor attribute)

 	BrakingType (class in pitop.pma.parameters)

 	brightness (pitop.display.Display attribute)

 	brightness() (in module pitop.pulse.ledmatrix)

 	Button (class in pitop.pma)

 	Buzzer (class in pitop.pma)

C

 	
 	Camera (class in pitop.camera)

 	cancel_button (pitop.miniscreen.Miniscreen attribute)

 	capacity (pitop.battery.Battery attribute)

 	capture_image() (pitop.camera.Camera method)

 	center (pitop.miniscreen.Miniscreen attribute)

 	clear() (in module pitop.pulse.ledmatrix)

 	(pitop.miniscreen.Miniscreen method)

 	CLOCKWISE (pitop.pma.parameters.ForwardDirection attribute)

 	close() (pitop.pma.Button method)

 	(pitop.pma.Buzzer method)

 	(pitop.pma.LED method)

 	(pitop.pma.UltrasonicSensor method)

 	(pitop.protoplus.sensors.DistanceSensor method)

 	
 	closed (pitop.pma.Button attribute)

 	(pitop.pma.Buzzer attribute)

 	(pitop.pma.LED attribute)

 	COAST (pitop.pma.parameters.BrakingType attribute)

 	config (pitop.pma.Button attribute)

 	(pitop.pma.Buzzer attribute)

 	(pitop.pma.LED attribute)

 	contrast() (pitop.miniscreen.Miniscreen method)

 	COUNTER_CLOCKWISE (pitop.pma.parameters.ForwardDirection attribute)

 	current_angle (pitop.pma.ServoMotor attribute)

 	current_frame() (pitop.camera.Camera method)

 	current_rpm (pitop.pma.EncoderMotor attribute)

 	current_speed (pitop.pma.EncoderMotor attribute)

 	(pitop.pma.ServoMotor attribute)

D

 	
 	decrement_brightness() (pitop.display.Display method)

 	device (pitop.miniscreen.Miniscreen attribute)

 	Direction (class in pitop.pma.parameters)

 	disable_device() (in module pitop.pulse.configuration)

 	Display (class in pitop.display)

 	display() (pitop.miniscreen.Miniscreen method)

 	display_image() (pitop.miniscreen.Miniscreen method)

 	display_image_file() (pitop.miniscreen.Miniscreen method)

 	display_multiline_text() (pitop.miniscreen.Miniscreen method)

 	
 	display_text() (pitop.miniscreen.Miniscreen method)

 	distance (pitop.pma.EncoderMotor attribute)

 	(pitop.pma.UltrasonicSensor attribute)

 	DistanceSensor (class in pitop.protoplus.sensors)

 	down_button (pitop.miniscreen.Miniscreen attribute)

 	draw() (pitop.miniscreen.Miniscreen method)

 	draw_image() (pitop.miniscreen.Miniscreen method)

 	draw_image_file() (pitop.miniscreen.Miniscreen method)

 	draw_multiline_text() (pitop.miniscreen.Miniscreen method)

 	draw_text() (pitop.miniscreen.Miniscreen method)

E

 	
 	eeprom_enabled() (in module pitop.pulse.configuration)

 	
 	enable_device() (in module pitop.pulse.configuration)

 	EncoderMotor (class in pitop.pma)

F

 	
 	flip_h() (in module pitop.pulse.ledmatrix)

 	flip_v() (in module pitop.pulse.ledmatrix)

 	format (pitop.camera.Camera attribute)

 	FORWARD (pitop.pma.parameters.Direction attribute)

 	forward() (pitop.pma.EncoderMotor method)

 	forward_direction (pitop.pma.EncoderMotor attribute)

 	ForwardDirection (class in pitop.pma.parameters)

 	
 	from_config() (pitop.pma.Button class method)

 	(pitop.pma.Buzzer class method)

 	(pitop.pma.LED class method)

 	from_file() (pitop.pma.Button class method)

 	(pitop.pma.Buzzer class method)

 	(pitop.pma.LED class method)

 	from_file_system() (pitop.camera.Camera class method)

 	from_usb() (pitop.camera.Camera class method)

G

 	
 	get_brightness() (in module pitop.pulse.ledmatrix)

 	get_distance() (pitop.protoplus.sensors.DistanceSensor method)

 	get_frame() (pitop.camera.Camera method)

 	
 	get_full_state() (pitop.battery.Battery class method)

 	get_pixel() (in module pitop.pulse.ledmatrix)

 	get_raw_distance() (pitop.protoplus.sensors.DistanceSensor method)

 	get_shape() (in module pitop.pulse.ledmatrix)

H

 	
 	height (pitop.miniscreen.Miniscreen attribute)

 	held_time (pitop.pma.Button attribute)

 	
 	hide() (pitop.miniscreen.Miniscreen method)

 	hold_repeat (pitop.pma.Button attribute)

 	hold_time (pitop.pma.Button attribute)

I

 	
 	import_class() (pitop.pma.Button static method)

 	(pitop.pma.Buzzer static method)

 	(pitop.pma.LED static method)

 	in_range (pitop.pma.UltrasonicSensor attribute)

 	inactive_time (pitop.pma.Button attribute)

 	increment_brightness() (pitop.display.Display method)

 	is_active (pitop.miniscreen.Miniscreen attribute)

 	(pitop.pma.Button attribute)

 	(pitop.pma.Buzzer attribute)

 	(pitop.pma.LED attribute)

 	
 	is_charging (pitop.battery.Battery attribute)

 	is_detecting_motion() (pitop.camera.Camera method)

 	is_full (pitop.battery.Battery attribute)

 	is_held (pitop.pma.Button attribute)

 	is_lit (pitop.pma.LED attribute)

 	is_pressed (pitop.keyboard.KeyboardButton attribute)

 	(pitop.miniscreen.miniscreen.MiniscreenButton attribute)

 	(pitop.pma.Button attribute)

 	is_recording() (in module pitop.pulse.microphone)

 	(pitop.camera.Camera method)

K

 	
 	KeyboardButton (class in pitop.keyboard)

L

 	
 	LED (class in pitop.pma)

 	
 	lid_is_open (pitop.display.Display attribute)

 	LightSensor (class in pitop.pma)

M

 	
 	max_distance (pitop.pma.UltrasonicSensor attribute)

 	max_rpm (pitop.pma.EncoderMotor attribute)

 	max_speed (pitop.pma.EncoderMotor attribute)

 	mcu_enabled() (in module pitop.pulse.configuration)

 	
 	microphone_sample_rate_is_16khz() (in module pitop.pulse.configuration)

 	microphone_sample_rate_is_22khz() (in module pitop.pulse.configuration)

 	Miniscreen (class in pitop.miniscreen)

 	MiniscreenButton (class in pitop.miniscreen.miniscreen)

 	mode (pitop.miniscreen.Miniscreen attribute)

O

 	
 	off() (in module pitop.pulse.ledmatrix)

 	(pitop.pma.Buzzer method)

 	(pitop.pma.LED method)

 	on() (pitop.pma.Buzzer method)

 	(pitop.pma.LED method)

 	own_state (pitop.camera.Camera attribute)

 	(pitop.Pitop attribute)

 	(pitop.pma.Button attribute)

 	(pitop.pma.Buzzer attribute)

 	(pitop.pma.EncoderMotor attribute)

 	(pitop.pma.LED attribute)

 	(pitop.pma.LightSensor attribute)

 	(pitop.pma.Potentiometer attribute)

 	(pitop.pma.ServoMotor attribute)

 	(pitop.pma.SoundSensor attribute)

 	(pitop.pma.UltrasonicSensor attribute)

P

 	
 	pin (pitop.pma.Button attribute)

 	(pitop.pma.Buzzer attribute)

 	(pitop.pma.LED attribute)

 	(pitop.pma.UltrasonicSensor attribute)

 	Pitop (class in pitop)

 	pitop.pulse.configuration (module)

 	pitop.pulse.ledmatrix (module)

 	pitop.pulse.microphone (module)

 	play_animated_image() (pitop.miniscreen.Miniscreen method)

 	play_animated_image_file() (pitop.miniscreen.Miniscreen method)

 	poll() (pitop.protoplus.adc.ADCProbe method)

 	
 	position (pitop.pma.Potentiometer attribute)

 	Potentiometer (class in pitop.pma)

 	power() (pitop.pma.EncoderMotor method)

 	prepare_image() (pitop.miniscreen.Miniscreen method)

 	pressed_time (pitop.pma.Button attribute)

 	print_config() (pitop.pma.Button method)

 	(pitop.pma.Buzzer method)

 	(pitop.pma.LED method)

 	print_state() (pitop.pma.Button method)

 	(pitop.pma.Buzzer method)

 	(pitop.pma.LED method)

 	pull_up (pitop.pma.Button attribute)

R

 	
 	raw_distance (pitop.protoplus.sensors.DistanceSensor attribute)

 	read_all() (pitop.protoplus.adc.ADCProbe method)

 	read_value() (pitop.protoplus.adc.ADCProbe method)

 	reading (pitop.pma.LightSensor attribute)

 	(pitop.pma.SoundSensor attribute)

 	record() (in module pitop.pulse.microphone)

 	
 	refresh() (pitop.miniscreen.Miniscreen method)

 	reset() (pitop.miniscreen.Miniscreen method)

 	reset_device_state() (in module pitop.pulse.configuration)

 	rotation() (in module pitop.pulse.ledmatrix)

 	rotation_counter (pitop.pma.EncoderMotor attribute)

 	run_tests() (in module pitop.pulse.ledmatrix)

S

 	
 	save() (in module pitop.pulse.microphone)

 	save_config() (pitop.pma.Button method)

 	(pitop.pma.Buzzer method)

 	(pitop.pma.LED method)

 	select_button (pitop.miniscreen.Miniscreen attribute)

 	ServoMotor (class in pitop.pma)

 	set_all() (in module pitop.pulse.ledmatrix)

 	set_bit_rate_to_signed_16() (in module pitop.pulse.microphone)

 	set_bit_rate_to_unsigned_8() (in module pitop.pulse.microphone)

 	set_control_to_hub() (pitop.miniscreen.Miniscreen method)

 	set_control_to_pi() (pitop.miniscreen.Miniscreen method)

 	set_debug_print_state() (in module pitop.pulse.ledmatrix)

 	set_max_fps() (pitop.miniscreen.Miniscreen method)

 	set_microphone_sample_rate_to_16khz() (in module pitop.pulse.configuration)

 	set_microphone_sample_rate_to_22khz() (in module pitop.pulse.configuration)

 	set_pixel() (in module pitop.pulse.ledmatrix)

 	set_power() (pitop.pma.EncoderMotor method)

 	set_sample_rate_to_16khz() (in module pitop.pulse.microphone)

 	set_sample_rate_to_22khz() (in module pitop.pulse.microphone)

 	set_target_rpm() (pitop.pma.EncoderMotor method)

 	set_target_speed() (pitop.pma.EncoderMotor method)

 	setting (pitop.pma.ServoMotor attribute)

 	should_redisplay() (pitop.miniscreen.Miniscreen method)

 	show() (in module pitop.pulse.ledmatrix)

 	(pitop.miniscreen.Miniscreen method)

 	
 	size (pitop.miniscreen.Miniscreen attribute)

 	sleep() (pitop.miniscreen.Miniscreen method)

 	smooth_acceleration (pitop.pma.ServoMotor attribute)

 	SoundSensor (class in pitop.pma)

 	source (pitop.pma.Buzzer attribute)

 	(pitop.pma.LED attribute)

 	source_delay (pitop.pma.Buzzer attribute)

 	(pitop.pma.LED attribute)

 	speaker_enabled() (in module pitop.pulse.configuration)

 	spi_bus (pitop.miniscreen.Miniscreen attribute)

 	start() (in module pitop.pulse.ledmatrix)

 	start_detecting_motion() (pitop.camera.Camera method)

 	start_handling_frames() (pitop.camera.Camera method)

 	start_video_capture() (pitop.camera.Camera method)

 	state (pitop.pma.Button attribute)

 	(pitop.pma.Buzzer attribute)

 	(pitop.pma.LED attribute)

 	stop() (in module pitop.pulse.ledmatrix)

 	(in module pitop.pulse.microphone)

 	(pitop.pma.EncoderMotor method)

 	(pitop.pma.ServoMotor method)

 	stop_animated_image() (pitop.miniscreen.Miniscreen method)

 	stop_detecting_motion() (pitop.camera.Camera method)

 	stop_handling_frames() (pitop.camera.Camera method)

 	stop_video_capture() (pitop.camera.Camera method)

 	sweep() (pitop.pma.ServoMotor method)

T

 	
 	target_angle (pitop.pma.ServoMotor attribute)

 	target_rpm() (pitop.pma.EncoderMotor method)

 	target_speed (pitop.pma.ServoMotor attribute)

 	threshold_distance (pitop.pma.UltrasonicSensor attribute)

 	time_remaining (pitop.battery.Battery attribute)

 	
 	toggle() (pitop.pma.Buzzer method)

 	(pitop.pma.LED method)

 	top_left (pitop.miniscreen.Miniscreen attribute)

 	top_right (pitop.miniscreen.Miniscreen attribute)

 	torque_limited (pitop.pma.EncoderMotor attribute)

U

 	
 	UltrasonicSensor (class in pitop.pma)

 	
 	unblank() (pitop.display.Display method)

 	up_button (pitop.miniscreen.Miniscreen attribute)

V

 	
 	value (pitop.pma.Button attribute)

 	(pitop.pma.Buzzer attribute)

 	(pitop.pma.LED attribute)

 	(pitop.pma.LightSensor attribute)

 	(pitop.pma.Potentiometer attribute)

 	(pitop.pma.SoundSensor attribute)

 	(pitop.pma.UltrasonicSensor attribute)

 	
 	values (pitop.pma.Button attribute)

 	(pitop.pma.Buzzer attribute)

 	(pitop.pma.LED attribute)

 	visible (pitop.miniscreen.Miniscreen attribute)

W

 	
 	wait_for_active() (pitop.pma.Button method)

 	wait_for_in_range() (pitop.pma.UltrasonicSensor method)

 	wait_for_inactive() (pitop.pma.Button method)

 	wait_for_out_of_range() (pitop.pma.UltrasonicSensor method)

 	wait_for_press() (pitop.pma.Button method)

 	wait_for_release() (pitop.pma.Button method)

 	wake() (pitop.miniscreen.Miniscreen method)

 	wattage (pitop.battery.Battery attribute)

 	wheel_circumference (pitop.pma.EncoderMotor attribute)

 	wheel_diameter (pitop.pma.EncoderMotor attribute)

 	when_activated (pitop.pma.Button attribute)

 	when_deactivated (pitop.pma.Button attribute)

 	
 	when_held (pitop.pma.Button attribute)

 	when_in_range (pitop.pma.UltrasonicSensor attribute)

 	when_out_of_range (pitop.pma.UltrasonicSensor attribute)

 	when_pressed (pitop.keyboard.KeyboardButton attribute)

 	(pitop.miniscreen.miniscreen.MiniscreenButton attribute)

 	(pitop.pma.Button attribute)

 	when_released (pitop.keyboard.KeyboardButton attribute)

 	(pitop.miniscreen.miniscreen.MiniscreenButton attribute)

 	(pitop.pma.Button attribute)

 	when_system_controlled (pitop.miniscreen.Miniscreen attribute)

 	when_user_controlled (pitop.miniscreen.Miniscreen attribute)

 	width (pitop.miniscreen.Miniscreen attribute)

Z

 	
 	zero_point (pitop.pma.ServoMotor attribute)

 _static/miniscreen/pi-top_4_Front.jpg

_static/miniscreen/pi-top_4_Front_BUTTONS.jpg

_static/devices/pi-top_4.jpg

_static/labs/rover.jpg

_static/overview/peripherals.jpg

_static/overview/pma.jpg

_static/miniscreen/pi-top_4_Front_OLED.jpg

_static/overview/devices.jpg
- -
Zpaareanritunassy Wl
111'!"[[[[‘
| — e e ~

_images/button.jpg

_images/buzzer.jpg
BUZZER

_images/Alex.jpg

_images/ExpansionPlate.jpg

_static/peripherals/pi-topPULSE.jpg

_images/components_spread.jpg

_images/devices.jpg
- -
Zpaareanritunassy Wl
111'!"[[[[‘
| — e e ~

_static/pma/foundation_kit/components_spread.jpg

_images/led_red.jpg
LED

_static/pma/foundation_kit/components/button.jpg

nav.xhtml

 Table of Contents

 		
 pi-top Python SDK (Preview)

 		
 Getting Started

 		
 Installing the SDK

 		
 pi-topOS

 		
 Using apt

 		
 Using PyPI

 		
 Building from source

 		
 Checking that the SDK is installed and working

 		
 What next!?

 		
 Overview

 		
 pi-top [4]

 		
 Interacting with onboard pi-top [4] hardware

 		
 Physical computing with pi-top [4]

 		
 pi-top laptops

 		
 Interacting with onboard pi-top laptop hardware

 		
 Using peripherals with a pi-top laptop

 		
 pi-topCEED

 		
 Interacting with onboard pi-topCEED hardware

 		
 Using peripherals with a pi-topCEED

 		
 Key Concepts

 		
 pi-top Maker Architecture

 		
 Inputs and Outputs

 		
 Digital and Analog

 		
 Ports and Pins

 		
 Identifying PMA port for a component

 		
 More Information

 		
 pi-top [4] Miniscreen

 		
 Recipes

 		
 PMA: Using a Button to Control an LED

 		
 Robotics Kit: DIY Rover

 		
 Robotics Kit: Robot - Moving Randomly

 		
 Robotics Kit: Robot - Line Detection

 		
 Displaying camera stream in pi-top [4]’s miniscreen

 		
 Robotics Kit: Robot - Control using Bluedot

 		
 Using the pi-topPULSE’s LED matrix to show the battery level

 		
 Choose a pi-top [4] miniscreen startup animation

 		
 API - pi-top Device

 		
 Pitop

 		
 Class Reference: Pitop

 		
 Using the Pitop object

 		
 pi-top Battery

 		
 Class Reference: pi-top Battery

 		
 pi-top Display

 		
 Class Reference: pi-top Display

 		
 pi-top [4] Miniscreen

 		
 Using the Miniscreen’s OLED Display

 		
 Class Reference: pi-top [4] Miniscreen

 		
 Using the Miniscreen’s Buttons

 		
 Class Reference: pi-top [4] Miniscreen Button

 		
 API - pi-top Maker Architecture (PMA) Components

 		
 Button

 		
 Buzzer

 		
 Encoder Motor

 		
 Parameters

 		
 LED

 		
 Light Sensor

 		
 Potentiometer

 		
 Servo Motor

 		
 Sound Sensor

 		
 Ultrasonic Sensor

 		
 API - pi-top Peripheral Devices

 		
 pi-topPROTO+

 		
 Using the pi-topPROTO+ as a Distance Sensor

 		
 Class Reference: pi-topPROTO+ Distance Sensor

 		
 Using the pi-topPROTO+’s onboard ADC

 		
 Class Reference: pi-topPROTO+ ADC Probe

 		
 pi-topPULSE

 		
 Using the pi-topPULSE’s microphone

 		
 Using the pi-topPULSE’s LED matrix: Test colors

 		
 Using the pi-topPULSE’s LED matrix: Fancy Light Show!

 		
 Using the pi-topPULSE’s LED matrix: Showing CPU temperature

 		
 Using the pi-topPULSE’s LED matrix: Showing CPU usage

 		
 Module Reference: pi-topPULSE Configuration

 		
 Module Reference: pi-topPULSE LED Matrix

 		
 Module Reference: pi-topPULSE Microphone

 		
 Advanced: EEPROM

 		
 API - System Peripheral Devices

 		
 USB Camera

 		
 Using a USB Camera to Access Image Data

 		
 Using a USB Camera to Capture Video

 		
 Adding Motion Detection to a USB Camera

 		
 Processing Camera Frame

 		
 Processing Camera Frame Stream with OpenCV (Convert to grayscale)

 		
 Ball Color Detection with OpenCV

 		
 Class Reference: USB Camera

 		
 Keyboard Button

 		
 Class Reference: KeyboardButton

 		
 Special Key Names

 		
 Command-Line Tools (CLI)

 		
 ‘pi-top’ Command

 		
 pi-top battery

 		
 pi-top display

 		
 pi-top devices

 		
 pi-top imu

 		
 pi-top oled

 		
 pi-top support

 		
 🧪 Labs - Experimental APIs ⚠️

 		
 Web

 		
 Servers

 		
 Blueprints

 		
 More Information

 		
 Frequently Asked Questions

 		
 How does this SDK work?

 		
 What is PMA?

 		
 I keep getting an Exception - what is the problem?

 		
 Where did this SDK come from?

 		
 I was using an older version of the Python libraries. How can I update to use this SDK?

 		
 I lost my miniscreen menu - where is it?

 		
 API Changes

 		
 Contributing

 		
 References

 		
 Requirements

 		
 License

_static/pma/foundation_kit/box_closed.jpg
e
=
FOUNDATION KIT

pi-top 4]

_static/pma/foundation_kit/box_open.jpg

_static/pma/foundation_kit/components/led_green.jpg
LED

_images/pi-topPULSE.jpg

_static/pma/foundation_kit/components/led_red.jpg
LED

_images/light_sensor.jpg
LIGHT SENSOR

_static/pma/foundation_kit/components/buzzer.jpg
BUZZER

_images/peripherals.jpg

_static/pma/foundation_kit/components/led_amber.jpg
LED

_images/pi-top_4_Front_OLED.jpg

_images/pma.jpg

_images/pi-top_4_Front.jpg

_static/pma/foundation_kit/components/light_sensor.jpg
LIGHT SENSOR

_images/pi-top_4_Front_BUTTONS.jpg

_images/potentiometer.jpg
POTENTIOMETER

_static/peripherals/pi-topSPEAKER.jpg
L ®

Jr,ﬁiii:iiijjljw,:

_images/rover.jpg

_static/pma/robotics_kit/ExpansionPlate.jpg

_images/sound_sensor.jpg
SOUND
SENSOR

_static/pma/foundation_kit/components/ultrasonic_sensor.jpg
ULTRASONIC
SENSOIO

_static/pma/robotics_kit/Alex.jpg

_static/comment-bright.png

_images/ultrasonic_sensor.jpg
ULTRASONIC
SENSOIO

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/pma/foundation_kit/components/potentiometer.jpg
POTENTIOMETER

_static/pma/foundation_kit/components/sound_sensor.jpg
SOUND
SENSOR

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/devices/pi-top_3.jpg

_static/devices/pi-topCEED.jpg

_static/devices/pi-top_1.jpg
e o w

‘ Loam. Play. Crote Quck Launeh Notes

‘ pi-topCODER

